1

BASIC CONCEPTS

1.	Whic	h of the followi	ng cor	npounds has the hi	ghest % a	ge of oxygen b	y weigł	nt?	(LHR 05)
	(a)	CH₃–OH	(b)	C ₂ H ₅ –OH	(c)	HCOOH	(d)	H ₂ O	
2.	Form	ula mass of Mg	SO4 is	g/mole:					(GRW 06)
	(a)	150	(b)	120	(c)	130	(d)	140	
3.	Elect	rometer is also	called	:					(LHR 07)
	(a)	Voltmeter	(b)	Avometer	(c)	Ion collector	(d)	Galvan	ometer
4.	In co	mbustion analy	sis H ₂	O vapors are absor	bed by:		(L	HR 07, 1	4, FSD 08)
	(a)	50% KOH	(b)	Mg (ClO ₄) ₂	(c)	NaOH	(d)	$MgCl_2$	
5.	Heigl	nt of peak in ma	ass spe	ectrum shows:					(LHR 08)
	(a)	Number of isot	opes		(b)	Mass number			
	(c)	Relative abund	ance		(d)	Number of pro	tons		
6.	The v	olume occupie	d by 1.	4 g of N ₂ at S.T.P is	S:	(SG	D 09, 11	1, LHR 10), GRW 08)
	(a)	2.24 dm ³	(b)	22.4 dm ³	(c)	1.12 dm³	(d)	112 dn	1 ³
7.	Mole	cular mass of C	aCO₃ i	s:					(LHR 09)
	(a)	100	(b)	90	(c)	120	(d)	106	
8.	Perce	entage of oxyge	n in w	ater is:					(LHR 09)
	(a)	80%	(b)	88.89%	(c)	8.8%	(d)	9.8%	
9.	A lim	iting reactant is	one v	vhich:				(MTN 10	, GRW 09)
	(a)		•	ntity in grams as com	•				
	(b)	Is taken a lesse	er quar	itity in volume as com	pared to oth	ner Reactants			
	(c)	Give maximum	amour	nt of product	(d)	Gives minimum	n amoun	t of prod	uct
10.	Tin h	as isotopes:							(LHR 11)
	(a)	7	(b)	9	(c)	11	(d)	5	
11.	Empi	rical formula of	gluco	se is:					(GRW 11)
	(a)	CHO	(b)	C ₂ H ₄ O ₂	(c)	CH₂O	(d)	C ₆ H ₁₂ O	6
12.	The r		tainin	g 8 grams of oxyge	n (O2) in g	rams is:			(GRW 11)
	(a)	32	(b)	22	(c)	16	(d)	11	
13.	1 am	u is equal to:							(LHR 11)
	(a)	$1.661 \times 10^{27} \text{ kg}$	g (b)	$1.661 \times 10^{-26} \text{ kg}$	(c)	$1.661 \times 10^{-24} \text{ k}$	g (d)	1.661 >	< <u>10⁻²⁴ g</u>
14.	Cadn	nium has isotop	es:						(LHR 10)
	(a)	9	(b)	16	(c)	17	(d)	18	
15 .	An or	dinary microsco	ope ca	n measure size of o	bject up t	0:			(FSD 07)
	(a)	100nm	(b)	200 nm	(c)	400 nm	(d)	500 nm	١
16.	How	many times a h	emogl	obin molecule is he	eavier than	hydrogen ator	n?		(FSD 10)
	(a)	38000 times	(b)	58000 times	(c)	68000 times	(d)	88000	times

17.	Isoto	opes are sister a	itoms	of same element wit	h similar	chemical prop	erties l	out diffe	rent:
	(a)	Atomic number	weight						
	(c)	Atomic weight			(d)	Atomic struct	ure		
18.	The v	volume occupie	d by 2	8 g of N₂ at STP is:					(RWP 10)
	(a)	22.414 dm ³	(b)	2.2414 dm ³	(c)	224.14 dm ³	(d)	1.12 d	m³
19.	One	mole of SO ₂ con	ntains.						(SGD 09)
	(a)	$6.02 \times 10^{23} \text{ atc}$	m of o	xygen	(b)	18.1×10 ²³ mo	lecules o	of SO ₂	
	(c)	$6.02 \times 10^{23} \text{ atc}$	oms of	sulphur	(d)	4 grams atom	of SO ₂		
20.	The	pressure of vap	ors m	aintained in ionizati	on cham	ber of mass sp	ectron	eter du	ring isotopic
	analy	ysis is:							(SGD 10)
	(a)	10 ³ torr	(b)	Around 10 ⁻⁵ torr	(c)	Around 10 ⁻⁷ to	orr	(d)	10 ⁻⁹ torr
21.	18.0	2 g of H₂O samp	ole has	3:					(MTN 07)
	(a)	1 mole of Hydr	rogen a	toms	(b)	1/2 mole of ox	ygen ato	om	
	(c)	$6.922 \times 10^{23} \text{ m}$	oles of	H ₂ O	(d)	$6.022 \times 10^{23} \text{ M}$	olecules	of H ₂ O	
22.	The	percentage of N	litroge	n in NH₃ is:					(MTN 07)
	(a)	$\frac{14}{34} \times 100$	(b)	$\frac{14}{17} \times 100$	(c)	$\frac{3}{17}$ × 100	(d)	$\frac{28}{34} \times 1$	100
23.	NH ₃	burns in O2 acco	ording	to the following read	ction:				(MTN 07)
		$4NH_{3(g)} + 30$	2(g) =	===2N _{2(g)} + 6H ₂ O _{(g})				
	(a)	Its show that 1	l mole	of NH3 will produce 1/2 I	moles of N	N_2			
	(b)	1 mole of NH₃	will pro	oduces 6 mole of N ₂					
	(c)	For the comple	ete read	ction 2 moles of NH ₃ an	d 20 g of	O ₂ are required			
	(d)	Fr the complet	e react	ion, 2 moles of NH₃ and	d 40 g of 0	O ₂ are required			
24.	Mole	cular formula is	equa	l to:					(MTN 09)
	(a)	n × empirical fo	ormula		(b)	n × compound	d formul	a	
	(c)	n × atomic forr	mula		(d)	$n \times \text{structural}$	formula		
25.	The	number of atom	s pres	ent in 0.5 moles of N	la is:				(MTN 09)
	(a)	1.0×10^{23}	(b)	6.02×10^{23}	(c)	2.04×10^{23}	(d)	3.01 ×	10 ²³
26.	The a	atomicity of NH:	3 is:				(MT	N, DGK 0	8, BWP 11)
	(a)	One	(b)	Two	(c)	Three	(d)	Four	
27.	Wate	er absorber used	d in co	mbustion analysis is	:				(MTN 09)
	(a)	50% KOH	(b)	50% NaOH	(c)	Lime water	(d)	Mg (Cl	O ₄) ₂
28.	The i	number of isoto	pes of	oxygen is:				(B	WP 08, 09)
	(a)	One	(b)	Two	(c)	Four	(d)	Three	
29.	A lim	niting reactant is	s that	one which:					(BWP 10)
	(a)	Gives least nur	nber of	f moles of product	(b)	Gives greates	t numbe	r of mole	s of product
	(c)	Is left behind a	after co	mpletion of reaction	(d)	Is most costly s	substance	es as comp	ared to others
30.	Aton	ns of which one	of the	following element h	ave inde	pendent exist	ence:		(BWP 10)
	(a)	Flourine	(b)	krypton	(c)	Oxygen	(d)	Nitroge	en
31.	Dem	pster's mass sp	ectro	neter was designed	for the	identification o	of isoto	pes of t	he elements
	whic	h were availabl	e in:						(DGK 08)
	(a)	Gaseous state	(b)	Liquid state	(c)	Solid state	(d)	Plasma	state
32.	One	of the substanc	es is u	sed to absorb CO2 ga	as in com	bustion analys	sis whic	h is that	: substance:
	(a)	50% KOH	(b)	Al_2O_3	(c)	$Mg(ClO_4)_2$	(d)	SiO ₂	(DGK 10)

34.	(a) The v (a)	6.022 × 10)	18 × 6.0									10	
34.		olume occi				122 × 10)23	(c)	55.	$.5 \times 6.0$)22 × 1	10^{23}	(d)	$\frac{16}{24} \times$	10 ²³
	(a)		upiea by	y 32 g	g of O₂ a	at S.T.	P is:								(11)
		22.414 dn	n ³ (b)	2.241 dı	m^3		(c)	224	4.414 c	lm³	(d)	0.224	dm³	
35.	Silve	r has isotop	es:											(LHR	10)
	(a)	2	(b)	16			(c)	17			(d)	18		
36.	The n	number of r	nolecul	es in (one gra	m ato	m of C	O ₂ is:						(GRV	V 10)
	(a)	6.02×10^{23}	(b)	6.02×10)22		(c)	6.0)2×10 ²⁷	7	(d)	6.02×	10^{24}	
37.	Mass	of electron	is:											(LHR	11)
	(a)	9.1095×1	0 ³¹ kg	(b)	9.1095×	10 ⁻³¹ k	g	(c)	9.1	.095×1	0 ⁻²⁷ kg	(d)	9.1095	5×10 ⁻³¹	g
38.	The n	number of r	noles of	f CO ₂	which o	contai	ո 8.0 ց	jram o	f oxyg	en is:			(LHR, G	RW 12	, 14)
	(a)	0.25	(b)	0.50			(c)	1.0)		(d)	1.50		
39.	How	many isoto	pes are	pres	ent in p	alladi	um?							(LHR	13)
	(a)	Four	(b)	Five			(c)	Six	((d)	Seven		
40.	The c	hemical an	alysis i	n whi	ch all th	ne eler	nents	preser	nt in a	comp	ound	are ide	entified	: (FSD	10)
	(a)	Quantitati	ve analy:	sis				(b)	Qu	alitativ	e analy	/sis			
	(c)	Gravimetr	ic analys	is				(d)	noi	ne of th	nese				
41.	Whic	h of the fol	lowing	eleme	ent can	exist i	in mor	noaton	nic for	m				(MTI	11)
	(a)	Oxygen	(b)	Chlorine	!		(c)	Nit	rogen		(d)	Helium	1	
						ANS	WER	KEY							
	1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
d	b	С	b	С	С	а	b	d	С	С	d	d	а	d
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	С	а	С	С	d	b	a	a	d	d	d	d	a	b
31	32	33	34	35	36	37	38	39	40	41				
С	a	С	a	а	a	b	a	С	b	d				

2

EXPERIMENTAL TECHNIQUES IN CHEMISTRY

(a) Eluent (d) Base line (c) Solvent front (d) Base line 2. Which one of the following substances is used as decolorizing agent: (a) Animal charcoal (b) Conc. HsDA (c) CaCl ₂ (d) Silica gel 3. The lodine present in water can be separated by which one of the following techniques: (GRW 08) (a) Sublimation (b) Chromatography (c) Filtration (d) Solvent extraction (d) Solvent extraction (e) Adsorption chromatography (b) Partition chromatography (c) Column chromatography (d) None of these (d) Solvent extraction (e) Desiccator (d) Suction flask (filtration can be increased using: (a) Desiccator (d) Suction flask (d) Suction flask (e) Cold finger (d) Suction flask (filtration can be increased using: (b) Mobile phase (c) Cold finger (d) Suction flask (d) None of these (e) Cold finger (d) Suction flask (fight of the following is purified by sublimation: (a) Stationary phase (b) Mobile phase (c) Distribution of the following is purified by sublimation: (a) Crystallization (d) Vaporization (d) Vaporization (e) Distribution of the following is purified by sublimation: (a) Naphthalene (b) Benzoic acid All of these (c) Ammonium chloride (d) All of these (d) Naphthalene (f) Naphthalene (d) Naphthalene (g) Na	1.	In pa	per chromatography, the point to which	the solven	t rises to maximum ext	ent is called:
Which one of the following substances is used as decolorizing agent: (a) Animal charcoal (b) Conc. H:SO4 (c) CaCl ₂ (d) Silica gel		(a)	Eluent	(b)	Chromatogram	(GRW 07)
(a) Animal charcoal (b) Conc. HisSO4 (c) CaCl ₂ (d) Silica gel 3. The iodine present in water can be separated by which one of the following techniques: (GRW 08) (a) Sublimation (b) Chromatography (c) Filtration (d) Solvent extraction 4. Chromatography in which the stationary phase is liquid is called: (a) Adsorption chromatography (b) Partition chromatography (c) Column chromatography (d) None of these 5. Rate of filtration can be increased using: (a) Desiccator (c) Cold finger (d) Solvent straction (d) Suction flask (c) Cold finger (d) Suction flask (d) Suction flask (e) Cold finger (d) Suction flask (e) Chromatographic tank (d) None of these (e) Distribution (d) Vaporization (e) Distribution (g) Sublimation (e) Distribution (g) Which of the following is purified by sublimation: (a) Naphthalene (b) Benzoic acid (d) All of these (e) Ammonium chiloride (d) All of these (e) Naphthalene (e) Naphthalene (f) Naphthalene (g) Solvent extraction is an equilibrium process and is controlled by: (FSD 07, 09) SGD 09, 11, RWP 08, 11, LHR 10, GRW 14) (g) P ₂ O ₅ (g) MgC ₂ (g) NH-CI (g) Naphthalene (g) Na						
(c) CaCl ₂ The iodine present in water can be separated by which one of the following techniques: [GRW 08] (a) Sublimation (b) Chromatography (c) Filtration (d) Solvent extraction Adsorption chromatography (b) Partition chromatography (c) Column chromatography (d) None of these 5. Rate of filtration can be increased using: (a) Desiccator (c) Cold finger (d) Suction flask 6. A component having small value of K (distribution coefficient) mostly remains in: (a) Stationary phase (b) Mobile phase (c) Chromatographic tank (d) None of these 7. Direct conversion of solid into vapors is called: (a) Crystallization (b) Sublimation (c) Distribution (d) Vaporization 8. Which of the following is purified by sublimation: (a) Naphthalene (b) Benzoic acid (c) Ammonium chloride (d) All of these 9. Substance that does not show the process of sublimation is: (a) K ₂ Cr ₂ O ₇ (b) Iodine (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (c) Law of mass action (d) Silica gel 11. Which is not used as drying agent in vacuum desiccator is: (a) Rydr (a) Fig. (a) Fig. (b) Iodine (c) NH ₂ Cl (d) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO ₄ (b) Naphthalene (c) NH ₂ Cl (d) Idoine (d) Fig. (ESD 07, 09, SGD 09, 11, RWP 08, 11, LHR 10, GRW 14) (e) NH ₂ Cl (d) Iodine (f. C) Idoine dissolves in water in the presence of KI due to formation of which one of the following species? (EMP 11, ESD 10, LHR 13) (ESD 11, ESD 10, LHR 13) (ESD 11, ESD 10, LHR 13) (ESD 11, LHR 10) Iodine (ESD 1	2.	Which		d as decolo	rizing agent: (GRW	08, 09,LHR 14)
The iodine present in water can be separated by which one of the following techniques: [GRW 03] (a) Sublimation (b) Chromatography (c) Filtration (d) Solvent extraction 4. Chromatography in which the stationary phase is liquid is called: (LHR 07) (a) Adsorption chromatography (d) None of these (c) Column chromatography (d) None of these (d) Solvent extraction (e) Partition chromatography (d) None of these (c) Cold finger (d) Solvent extraction (e) Cold finger (d) Solvent extraction (e) Mobile phase (e) Mobile phase (f) Mobile phase (f) Mobile phase (g) Distribution of the following is purified by sublimation (g) Waporization (g) Waporization (g) Maphthalene (g)		(a)	Animal charcoal		Conc. H ₂ SO ₄	
(a) Sublimation (b) Chromatography (c) Filtration (d) Solvent extraction 4. Chromatography in which the stationary phase is liquid is called: (LHR 02) (a) Adsorption chromatography (b) Partition chromatography (c) Column chromatography (d) None of these 5. Rate of filtration can be increased using: (LHR 08, 11) (c) Cold finger (d) Suction flask (c) Cold finger (d) Suction flask (d) Suction flask (d) Suction flask (d) Stationary phase (b) Mobile phase (c) Chromatographic tank (d) None of these 7. Direct conversion of solid into vapors is called: (a) Crystallization (b) Sublimation (c) Distribution (d) Vaporization 8. Which of the following is purified by sublimation: (a) Naphthalene (b) Benzoic acid (c) Ammonium chloride (d) All of these 9. Substance that does not show the process of sublimation is: (GRW 11) (a) K-Cr ₂ O ₂ (b) Indine (d) NH ₄ Cl 10. Solvent extraction is an equilibrium process and is controlled by: (FSD 07,09), SGD 09, 11, RWP 08, 11, LHR 10, GRW 14) (a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (c) Law of mass action (d) Silica gel 11. Which is not used as drying agent in vacuum desiccator is: (LHR 14) (a) P ₂ O ₅ (c) MgC ₂ (d) Silica gel 12. Which chemical do not undergo sublimation? (d) Indine (c) NH ₂ Cl (d) Iodine (c) NH ₃ Cl (d) Iodine (d) Iodine (e) NH ₃ Cl (e) NH ₃ Cl (d) Iodine (e) NH ₃ Cl (d) NH ₃ Cl (d) Iodine (e) NH ₃ Cl (d) Iodine (e) NH ₃ Cl (d)				` ,	_	
(c) Filtration (d) Solvent extraction Chromatography in which the stationary phase is liquid is called: (LHR 02) (a) Adsorption chromatography (b) Partition chromatography (c) Column chromatography (d) None of these 5. Rate of filtration can be increased using: (LHR 08, 11) (c) Cold finger (d) Suction flask 6. A component having small value of K (distribution coefficient) mostly remains in: (LHR 08) (a) Stationary phase (b) Mobile phase (c) Chromatographic tank (d) None of these 7. Direct conversion of solid into vapors is called: (GRW 09) (a) Crystallization (b) Sublimation (c) Distribution (d) Vaporization 8. Which of the following is purified by sublimation: (LHR 09) (a) Naphthalene (b) Benzoic acid (d) All of these 9. Substance that does not show the process of sublimation is: (GRW 11) (a) K2Cr2O7 (b) Iodine (c) Naphthalene (d) NH4Cl 10. Solvent extraction is an equilibrium process and is controlled by: (ESD 07, 09, SGD 09, 11, RWP 08, 11, LHR 10, GRW 14) (a) Distribution law (b) The amount of solvent used the most account of solvent used the most of most account of solvent used the most of most account of solvent used the most of most account of solvent used the most common solvent used in solvent extraction is (EMP 11, FSD 10, LHR 13) 10. Goldine dissolves in water in the presence of KI due to formation of which one of the following species? (EMP 11, FSD 10, LHR 13) (a) Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (EMP 11, FSD 10, LHR 13) (b) Interval the most common solvent used in solvent extraction is: (EMP 11, FSD 10, LHR 13) (c) Rectified spirit (d) Ammonium chloride	3.	The id	dine present in water can be separated	by which o	one of the following tecl	hniques: <mark>(GRW 08)</mark>
4. Chromatography in which the stationary phase is liquid is called: (a) Adsorption chromatography (b) Partition chromatography (c) Column chromatography (d) None of these 5. Rate of filtration can be increased using: (a) Desiccator (b) Chromatographic tank (c) Cold finger (d) Suction flask 6. A component having small value of K (distribution coefficient) mostly remains in: (a) Stationary phase (b) Mobile phase (c) Chromatographic tank (d) None of these 7. Direct conversion of solid into vapors is called: (a) Crystallization (c) Distribution (d) Vaporization (e) Distribution (d) Vaporization (e) Distribution (d) All of these 9. Substance that does not show the process of sublimation is: (a) K2Cr2O7 (c) Naphthalene (d) All of these 9. Substance that does not show the process of sublimation is: (GRW 11) (a) K2Cr2O7 (c) Naphthalene (d) NH-kCl 10. Solvent extraction is an equilibrium process and is controlled by: (ESD 07, 09, SGD 09, 11, RWP 08, 11, LHR 10, GRW 14) (a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used 11. Which is not used as drying agent in vacuum desiccator is: (LHR 14) (a) P-Os (b) Naphthalene (c) MgCl2 (d) Silica gel 12. Which chemical do not undergo sublimation? (a) KMNO4 (b) Naphthalene (c) NH-kCl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (EWP 11, FSD 10, LHR 13) (a) Lectified spirit (d) Diethyl ether (c) Rectified spirit (d) Diethyl ether (e) Rectified spirit (d) Diethyl ether (e) Rectified spirit (d) Annonium chloride		(a)	Sublimation	(b)	Chromatography	
(a) Adsorption chromatography (b) Partition chromatography (c) Column chromatography (d) None of these 5. Rate of filtration can be increased using: (a) Desiccator (b) Chromatographic tank (c) Cold finger (d) Suction flask (d) Suction flask (a) Stationary phase (b) Mobile phase (c) Chromatographic tank (d) None of these (c) Chromatographic tank (d) None of these (e) Mobile phase (f) None of these (gRW 09) 7. Direct conversion of solid into vapors is called: (a) Crystallization (b) Sublimation (c) Distribution (d) Vaporization (e) Distribution (f) Benzoic acid (f) Ammonium chloride (gRW 11) (grw 11) (grw 12) (grw 12) (grw 13) (grw 14) (grw 14) (grw 15) (grw 16) (grw 16) (grw 16) (grw 16) (grw 17) (grw 17) (grw 18) (grw 18) (grw 19) (grw 11) (grw 11) (grw 11) (grw 11) (grw 12) (grw 13) (grw 14) (grw 14) (grw 15) (grw 16) (grw 16) (grw 16) (grw 16) (grw 17) (grw 17) (grw 18) (grw 19) (grw 19) (grw 19) (grw 19) (grw 19) (grw 19) (grw 11) (grw 11) (grw 11) (grw 12) (grw 13) (grw 14) (grw 14) (grw 14) (grw 15) (grw 16) (grw 16) (grw 16) (grw 16) (grw 17) (grw 17) (grw 18) (grw 19) (grw 1						
(c) Column chromatography (d) None of these Rate of filtration can be increased using: (a) Desiccator (b) Chromatographic tank (c) Cold finger (d) Suction flask 6. A component having small value of K (distribution coefficient) mostly remains in: (LHR 08) (a) Stationary phase (b) Mobile phase (c) Chromatographic tank (d) None of these (e) Chromatographic tank (d) None of these (e) Chromatographic tank (d) None of these (e) Distribution (e) Distribution (f) Vaporization (g) Vap	4.	Chron		se is liquid		
5. Rate of filtration can be increased using: (a) Desiccator (b) Chromatographic tank Suction flask 6. A component having small value of K (distribution coefficient) mostly remains in: (c) Chromatographic tank (d) None of these 7. Direct conversion of solid into vapors is called: (a) Crystallization (b) Sublimation (c) Distribution (d) Vaporization (e) Distribution (f) Naphthalene (g) All of these 9. Substance that does not show the process of sublimation is: (a) KCCr2O (b) Naphthalene (d) NH4Cl (d) NH4Cl 10. Solvent extraction is an equilibrium process and is controlled by: (c) Law of mass action (d) The amount of solvent used (e) Law of mass action (d) Naphthalene (e) NgCl2 (e) MgCl2 (f) MgCl2 (f) Naphthalene (h) Naphthalene (h) Naphthalene (h) NH4Cl (h) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (e) NH4Cl (f) Naphthalene (h)		(a)	Adsorption chromatography	(b)	Partition chromatography	1
(a) Desiccator (b) Chromatographic tank (c) Cold finger (d) Suction flask 6. A component having small value of K (distribution coefficient) mostly remains in: (LHR 08) (a) Stationary phase (b) Mobile phase (c) Chromatographic tank (d) None of these 7. Direct conversion of solid into vapors is called: (a) Crystallization (b) Sublimation (c) Distribution (d) Vaporization 8. Which of the following is purified by sublimation: (a) Naphthalene (b) Benzoic acid (d) All of these 9. Substance that does not show the process of sublimation is: (GRW 11) (a) K ₂ Cr ₂ O ₇ (b) Iodine (b) Naphthalene (d) NH ₄ Cl 10. Solvent extraction is an equilibrium process and is controlled by: (c) Naphthalene (d) NH ₄ Cl 11. Which is not used as drying agent in vacuum desiccator is: (LHR 14) (a) P ₂ O ₅ (b) CaCl ₂ (c) MgCl ₂ (d) Silica gel 12. Which chemical do not undergo sublimation? (a) KMNO ₄ (b) Naphthalene (c) NH ₄ Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I ₂ (b) I ₃ (d) I ₄ 14. The most common solvent used in solvent extraction is: (FSD 11) (a) Acetone (b) Ethanol (c) Retified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride				(d)	None of these	
(c) Cold finger (d) Suction flask A component having small value of K (distribution coefficient) mostly remains in: (a) Stationary phase (b) Mobile phase (c) Chromatographic tank (d) None of these 7. Direct conversion of solid into vapors is called: (a) Crystallization (d) Vaporization (c) Distribution (d) Vaporization 8. Which of the following is purified by sublimation: (a) Naphthalene (b) Benzoic acid (c) Ammonium chloride (d) All of these 9. Substance that does not show the process of sublimation is: (a) K2Cr2Or (b) I Jodine (c) Naphthalene (d) NH4Cl 10. Solvent extraction is an equilibrium process and is controlled by: (a) Distribution law (b) The amount of solvent used in solvent used as drying agent in vacuum desiccator is: (a) P2Os (c) MgCl2 (d) Silica gel 11. Which is not used as drying agent in vacuum desiccator is: (LHR 14) (a) Distribution law (b) CaCl2 (c) MgCl2 (d) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO4 (b) Naphthalene (c) MH4Cl 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I2 (c) I3 (d) I4 14. The most common solvent used in solvent extraction is: (a) Acetone (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride (c) Marmonium chloride	5.	Rate o	of filtration can be increased using:			(LHR 08, 11)
6. A component having small value of K (distribution coefficient) mostly remains in: (a) Stationary phase (b) Mobile phase (c) Chromatographic tank (d) None of these 7. Direct conversion of solid into vapors is called: (a) Crystallization (b) Sublimation (c) Distribution (d) Vaporization (a) Naphthalene (b) Benzoic acid (c) Ammonium chloride (d) All of these 9. Substance that does not show the process of sublimation: (a) K2Cr2Or (b) Iodine (c) Naphthalene (d) Naphthalene (d) Naphthalene (d) Naphthalene (e) Naphthalene (d) Naphthalene (f) Naphthalene (d) Naphthalene (g) Naphthalene (d) The amount of solvent used (g) Law of mass action (d) The amount of solvent used (c) Law of mass action (d) The amount of solvent 11. Which is not used as drying agent in vacuum desiccator is: (LHR 14) (a) P2Os (b) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO4 (b) Naphthalene (c) NH4Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (A) I3 (d) I4 14. The most common solvent used in solvent extraction is: (ESD 11) LEND 10, LHR 13) (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride		(a)	Desiccator	(b)	Chromatographic tank	
(a) Stationary phase (b) Mobile phase (c) Chromatographic tank (d) None of these (c) Chromatographic tank (d) None of these (d) None of the following is purified by sublimation (d) Vaporization (d) Vaporization (d) Vaporization (LHR 09) (d) Naphthalene (e) Naphthalene (d) All of these (d) All of these (d) All of these (e) Naphthalene (d) NH4Cl						
(c) Chromatographic tank (d) None of these 7. Direct conversion of solid into vapors is called: (a) Crystallization (b) Sublimation (c) Distribution (d) Vaporization 8. Which of the following is purified by sublimation: (a) Naphthalene (b) Benzoic acid (c) Ammonium chloride (d) All of these 9. Substance that does not show the process of sublimation is: (a) K2Cr2Or (b) Iodine (c) Naphthalene (d) NH4Cl 10. Solvent extraction is an equilibrium process and is controlled by: (a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (d) P2Os (e) MgCl2 (d) Silica gel 11. Which is not used as drying agent in vacuum desiccator is: (a) P2Os (b) Naphthalene (a) KMnO4 (b) Naphthalene (b) Naphthalene (c) NH4Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I2 (b) I3 (a) I2 (b) I4 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (A) Coclumn chloride (b) Ammonium chloride (c) Rectified spirit (d) Diethyl ether	6.	A com	ponent having small value of K (distrib			n: (LHR 08)
7. Direct conversion of solid into vapors is called: (a) Crystallization (b) Sublimation (c) Distribution (d) Vaporization (d) Vaporization (e) Distribution (d) Vaporization (EHR 09) 8. Which of the following is purified by sublimation: (a) Naphthalene (b) Benzoic acid (c) Ammonium chloride (d) All of these 9. Substance that does not show the process of sublimation is: (a) K2Cr2O7 (b) Iodine (c) Naphthalene (d) NH4Cl 10. Solvent extraction is an equilibrium process and is controlled by: (ESD 07, 09, SGD 09, 11, RWP 08, 11, LHR 10, GRW 14) (a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (c) Law of mass action (d) Silica gel 11. Which is not used as drying agent in vacuum desiccator is: (a) P2Os (b) CaCl2 (c) MgCl2 (d) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO4 (b) Naphthalene (c) NH4Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I2 (b) I- (c) I3- (c) Rectified spirit (d) Diethyl ether (FSD 11) (FSD 11) (FSD 11) (FSD 11) (FSD 10, BWP 08) (Ammonium chloride		(a)		(b)		
(a) Crystallization (b) Sublimation (c) Distribution (d) Vaporization 8. Which of the following is purified by sublimation: (a) Naphthalene (b) Benzoic acid (c) Ammonium chloride (d) All of these 9. Substance that does not show the process of sublimation is: (GRW 11) (a) K ₂ Cr ₂ O ₇ (b) Iodine (c) Naphthalene (d) NH ₄ Cl 10. Solvent extraction is an equilibrium process and is controlled by: (a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (d) P ₂ O ₅ (d) Silica gel 11. Which is not used as drying agent in vacuum desiccator is: (LHR 14) (a) P ₂ O ₅ (b) CaCl ₂ (c) MgCl ₂ (d) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO ₄ (b) Naphthalene (c) NH ₄ Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (b) I ₂ (c) I ₃ (d) I ₄ 14. The most common solvent used in solvent extraction is: (FSD 11) (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether Which of the following substance shows the property of sublimation? (b) Ammonium chloride		(c)	Chromatographic tank	(d)	None of these	
(c) Distribution (d) Vaporization 8. Which of the following is purified by sublimation: (a) Naphthalene (b) Benzoic acid (c) Ammonium chloride (d) All of these 9. Substance that does not show the process of sublimation is: (a) K ₂ Cr ₂ O ₇ (b) Iodine (c) Naphthalene (d) NH ₄ Cl 10. Solvent extraction is an equilibrium process and is controlled by: (a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (c) MgCl ₂ (d) Silica gel 11. Which is not used as drying agent in vacuum desiccator is: (LHR 14) (a) P ₂ O ₅ (b) CaCl ₂ (c) MgCl ₂ (c) MgCl ₂ (d) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO ₄ (b) Naphthalene (c) NH ₄ Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I ₂ (b) I ² (c) I ₃ (d) I ₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (BGD 10, BWP 03)	7.	Direct	conversion of solid into vapors is called	d:		(GRW 09)
8. Which of the following is purified by sublimation: (a) Naphthalene (b) Benzoic acid (c) Ammonium chloride (d) All of these 9. Substance that does not show the process of sublimation is: (a) K ₂ Cr ₂ O ₇ (b) Iodine (c) Naphthalene (d) NH ₄ Cl 10. Solvent extraction is an equilibrium process and is controlled by: (ESD 07, 09, SGD 09, 11, RWP 08, 11, LHR 10, GRW 14) (a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (d) P ₂ O ₅ (e) MgCl ₂ (d) Silica gel 11. Which is not used as drying agent in vacuum desiccator is: (LHR 14) (a) P ₂ O ₅ (b) CaCl ₂ (c) MgCl ₂ (d) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO ₄ (b) Naphthalene (c) NH ₄ Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I ₂ (b) I ₂ (c) I ₃ : (a) I ₂ (b) I ₂ (c) Rectified spirit (d) Diethyl ether (SGD 10, BWP 03) (A) Mononium chloride		(a)	Crystallization	(b)	Sublimation	
(a) Naphthalene (b) Benzoic acid (c) Ammonium chloride (d) All of these 9. Substance that does not show the process of sublimation is: (GRW 11) (a) K2Cr2O7 (b) Iodine (c) Naphthalene (d) NH4Cl 10. Solvent extraction is an equilibrium process and is controlled by: (a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (d) The amount of solvent used (d) P2Os (d) Silica gel 11. Which is not used as drying agent in vacuum desiccator is: (LHR 14) (a) P2Os (b) CaCl2 (c) MgCl2 (d) Silica gel 12. Which chemical do not undergo sublimation? (d) Iodine (c) NH4Cl (d) Iodine (d					Vaporization	
(c) Ammonium chloride (d) All of these Substance that does not show the process of sublimation is: (a) K2Cr2O7 (b) Iodine (c) Naphthalene (d) NH4Cl 10. Solvent extraction is an equilibrium process and is controlled by: (a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (c) MgCl ₂ (d) Silica gel 11. Which is not used as drying agent in vacuum desiccator is: (a) P ₂ O ₅ (b) CaCl ₂ (c) MgCl ₂ (d) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO ₄ (b) Naphthalene (c) NH ₄ Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I ₂ (b) I (c) I ₃ : (d) I ₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride	8.	Which	n of the following is purified by sublimat	tion:		(LHR 09)
9. Substance that does not show the process of sublimation is: (a) K2Cr2Or (b) Naphthalene (d) NH4Cl 10. Solvent extraction is an equilibrium process and is controlled by: (a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (d) The amount of solvent used (e) Law of mass action (d) The amount of solvent used (e) Law of mass action (d) The amount of solvent used (e) MgCl2 (f) MgCl2 (g) MgCl2 (g) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO4 (b) Naphthalene (c) NH4Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I2 (b) I3 (a) I2 (c) I3 (d) I4 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride		(a)	Naphthalene	(b)	Benzoic acid	
(a) K2Cr2O7 (b) Iodine (c) Naphthalene (d) NH4Cl 10. Solvent extraction is an equilibrium process and is controlled by: (a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (d) The amount of solvent used (e) Law of mass action (d) The amount of solvent used (f) Law of mass action (d) The amount of solvent used (g) Law of mass action (d) The amount of solvent used (g) Law of mass action (d) The amount of solvent used (g) Law of mass action (d) The amount of solvent used (g) Law of mass action (d) The amount of solvent used (g) Law of mass action (d) The amount of solvent used (g) Law of mass action (d) The amount of solvent used (g) Law of mass action (d) The amount of solvent used (g) Law of mass action (d) The amount of solvent of solven						
(c) Naphthalene (d) NH4Cl Solvent extraction is an equilibrium process and is controlled by: (FSD 07, 09, SGD 09, 11, RWP 08, 11, LHR 10, GRW 14) (a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (d) The amount of solvent used (e) P ₂ O ₅ (b) CaCl ₂ (c) MgCl ₂ (d) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO ₄ (b) Naphthalene (c) NH ₄ Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I ₂ (b) I (b) I (c) I ₃ (d) I ₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (SGD 10, BWP 08)	9.			sublimatio		(GRW 11)
10. Solvent extraction is an equilibrium process and is controlled by: (a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (e) P2Os (f) MgCl2 (f) MgCl2 (g) MgCl2 (g) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO4 (b) Naphthalene (c) NH4Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I2 (b) I ⁻ (c) I3 ⁻ (d) I4 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride						
(a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solvent used (d) Silica gel (d) Silica gel (d) Silica gel (d) Silica gel (d) The amount of the following (e) Naphthalene (for in the presence of KI due to formation of which one of the following species? (a) KMnO4 (b) Naphthalene (for in the presence of KI due to formation of which one of the following species? (a) I2 (b) I- (c) I3 (d) I4 (b) The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (b) Ethanol (c) Rectified spirit (d) Diethyl ether (a) Sodium chloride (b) Ammonium chloride		(c)	Naphthalene	(d)	NH ₄ Cl	
(a) Distribution law (b) The amount of solvent used (c) Law of mass action (d) The amount of solute 11. Which is not used as drying agent in vacuum desiccator is: (LHR 14) (a) P ₂ O ₅ (b) CaCl ₂ (c) MgCl ₂ (d) Silica gel 12. Which chemical do not undergo sublimation? (MTN 07, FSD 08) (a) KMnO ₄ (b) Naphthalene (c) NH ₄ Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I ₂ (b) I ⁻ (c) I ₃ - (d) I ₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (SGD 10, BWP 08) (a) Sodium chloride (b) Ammonium chloride	10.	Solve	nt extraction is an equilibrium process a			
(c) Law of mass action (d) The amount of solute 11. Which is not used as drying agent in vacuum desiccator is: (a) P ₂ O ₅ (b) CaCl ₂ (c) MgCl ₂ (d) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO ₄ (b) Naphthalene (c) NH ₄ Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I ₂ (b) I ⁻ (c) I ₃ (d) I ₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride (c) Ammonium chloride						
11. Which is not used as drying agent in vacuum desiccator is: (a) P ₂ O ₅ (b) CaCl ₂ (c) MgCl ₂ (d) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO ₄ (b) Naphthalene (c) NH ₄ Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I ₂ (b) I ⁻ (c) I ₃ (d) I ₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride						sed
(a) P ₂ O ₅ (b) CaCl ₂ (c) MgCl ₂ (d) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO ₄ (b) Naphthalene (c) NH ₄ Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I ₂ (b) I ⁻ (c) I ₃ ⁻ (d) I ₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride		` '		` ,		
(c) MgCl ₂ (d) Silica gel 12. Which chemical do not undergo sublimation? (a) KMnO ₄ (b) Naphthalene (c) NH ₄ Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I ₂ (b) I ⁻ (c) I ₃ - (d) I ₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride	11.					(LHR 14)
12. Which chemical do not undergo sublimation? (a) KMnO4 (b) Naphthalene (c) NH ₄ Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I ₂ (b) I ⁻ (c) I ₃ ⁻ (d) I ₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride					-	
(a) KMnO ₄ (b) Naphthalene (c) NH ₄ Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I ₂ (b) I ⁻ (c) I ₃ - (d) I ₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride					_	
(c) NH4Cl (d) Iodine 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I ₂ (b) I ⁻ (c) I ₃ ⁻ (d) I ₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride (c) Remain (d) Diethyl ether (d) Diethyl ether	12.					MTN 07, FSD 08)
 13. Iodine dissolves in water in the presence of KI due to formation of which one of the following species? (a) I₂ (b) I⁻ (c) I₃⁻ (d) I₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride 					-	
species? (a) I ₂ (b) I ⁻ (c) I ₃ (d) I ₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride						
(a) I ₂ (b) I ⁻ (c) I ₃ - (d) I ₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride	13.			KI due to		
(c) I ₃ - (d) I ₄ 14. The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride (SGD 10, BWP 08)		-				FSD 10, LHR 13)
 The most common solvent used in solvent extraction is: (a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether Which of the following substance shows the property of sublimation? (a) Sodium chloride (b) Ammonium chloride 						
(a) Acetone (b) Ethanol (c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (SGD 10, BWP 08) (a) Sodium chloride (b) Ammonium chloride					I_4	
(c) Rectified spirit (d) Diethyl ether 15. Which of the following substance shows the property of sublimation? (SGD 10, BWP 08) (a) Sodium chloride (b) Ammonium chloride	14.					(FSD 11)
 Which of the following substance shows the property of sublimation? (SGD 10, BWP 08) (a) Sodium chloride (b) Ammonium chloride 				` ,		
(a) Sodium chloride (b) Ammonium chloride						
	15 .		•			GD 10, BWP 08)
(c) Copper chloride (d) Acetic acid						
		(c)	Copper chloride	(d)	Acetic acid	

16.	In pa	aper chromatography, the mobile phase is	usually:		(RWP 08)
	(a)	Liquid ammonia	(b)	Water	
	(c)	Organic liquid	(d)	None of these	
17.	The c	comparative rate at which the solutes mov	e in pape		
				(RWP 09, MTN 08, LI	łR 12, GRW 12, 14)
	(a)	The size of paper	(b)	R _f values of solutes	
	(c)	Temperature of the experiment	(d)	Size of the chromatogra	
18.	Whe	n hot saturated solution is cooled very slov	wly we g	et:	(RWP 10, DGK 11)
	(-)	Madium sina suuskala	(L)	Laura aina ausahala	
	(a)	Medium size crystals	(b)	Large size crystals	
10	(c)	Premature crystallization of the substance	(d)	No crystals	(14=11.0=)
19.		matography is the process which involves			
	(a)	Two mobile phases	(b)	A stationary phase and	a mobile phase
20	(c)	Two stationary and two mobile phases	(d)	Two stationary phases	(14=11 A=)
20.		Cl4 solvent, I ₂ shows:	(1-1)	Durana salana	(MTN 07)
	(a)	Blue colour	(b)	Brown colour	
24	(c)	Pink colour	(d)	Purple colour	(MTN 60)
21.		drying Agents used in vacuum desiccator a		Cilian mal	(MTN 08)
	(a)	CaCl ₂	(b)	Silica gel	
	(c)	Both a and b	(d)	None	VI-IV 00 40 DWD 00
22.		ratio of the solute in organic phase to that	-		MTN 08, 10, BWP 08)
	(a)	Rate constant	(b)	Equilibrium constant	
	(c)	Distribution coefficient	(d)	Arrhenius constant	
23.		n an organic compound which is volatile o		= = = = = = = = = = = = = = = = = = = =	ited by: (MIN 09)
	(a)	Crystallization	(b)	Sublimation	
	(c)	Solvent extraction	(d)	Chromatography	
24.		ne can be purified by process of:	41.5		(MTN 09)
	(a)	Evaporation	(b)	Saponification	
	(c)	Sublimation	(d)	Crystallization	
25.		luble particles can be separated from a liqu	-		(MTN 11)
	(a)	Sublimation	(b)	Solvent extraction	
	(c)	Filtration	(d)	Crystallization	
26.	-	eated extraction using small portion of solv			(DGK 08)
	(a)	Accurate	(b)	Efficient	
	(c)	Slow	(d)	Rapid	
27.		chromatography in which stationary phase	-		(DGK 08)
	(a)	Partition chromatography	(b)	Column chromatograph	ıy
	(c)	Adsorption chromatography	(d)	All of these	
28.		romatography the stationary phase:			(DGK 10, FSD 08)
	(a)	Is a solid	(b)	Is a liquid	
	(c)	May be liquid or gas	(d)	May be solid or liquid	
29.		drying agents used in vacuum desiccator a			(LHR 12)
	(a)	AgCl	(b)	NH ₄ Cl	
	(c)	CaCl ₂	(d)	AICI ₃	
30.	Good	ch crucible is made of:			(LHR 14)
	(a)	Clay	(b)	Asbestos	
	(c)	Porcelain	(d)	Iron	
31.	Solve	ent extraction is a process:			(LHR 14)
	(a)	Exothermic	(b)	Endothermic	
	(c)	Equilibrium	(d)	Non-equilibrium	
32.	Purit	y of a substance is checked by:	-		
	(a)	Crystallization	(b)	Sublimation	
	(c)	Solvent extraction	(d)	Chromatography	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	a	d	b	d	а	b	d	а	а	С	а	С	d	b
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	b	b	b	d	С	С	d	С	С	b	а	d	С	С
31	32													
С	d													

3

GASES

1.	The id	eal gas consta	nt R, wl	nen exp	ressed in dm	³ atm. m	ol ⁻¹ .K ⁻¹ units h	ave a v	alue of:	(GRW 05)
	(a)	0.0821	(b)	1.0821		(c)	82.21	(d)	82.1	
2.	Calorio	e is equivalent	to:							(GRW 05)
	(a)	0.4184 J	(b)	41.84 J		(c)	4.184 J	(d)	10.418	
3	The de	ensity of a gas							_	06, FSD 11)
	(a)	$d = \frac{PM}{RT}$	(b)	$d = \frac{RT}{PM}$		(c)	$d = \frac{PMR}{T}$	(d)	$d = \frac{PM}{R}$	<u> </u>
4.	Which	gas has highe	st diffus	sion rat	e?					(LHR 06)
	(a)	SO ₂	(b)	Cl_2		(c)	NH ₃	(d)	CO_2	
5.		matically Boyle	e's law i	is show	n as:	. ,		` ,		(LHR 07)
	(a)	PT = K	(b)	VT = K		(c)	$\frac{P}{T} = K$	(d)	PV = K	
6.	Ahsoli	ıte zero is equa	al to:				•			(GRW 07)
0.	(a)	273°C	(b)	–273°C		(c)	0°C	(d)	273 K	
7.		values of 'a' ar	` '		r Waal's egua	` '		` '		the gas is:
	(a)	Ideal (b)	Non-ide			polar		ed easily		(LHR 08)
0	. ,	nstant factor i			., .		(-)	,		
8.	(a)	Volume	(b)	tempera		(c)	Pressure	(d)	all of th	(GRW 08)
9.		gas will diffus		•		(C)	riessuie	(u)	all Of th	(GRW 09)
J.	(a)	CO ₂	(b)	NH ₃	•	(c)	HCl	(d)	SO ₂	(GRW 09)
10.		al human body			1	(C)	TICI	(u)	30 2	(LHR 11)
10.	(a)	37°C	(b)	98.6°C	,	(c)	37°F	(d)	273 K	(=====)
11.	` '	pressure of o			n lunas in tor	` '	(MTN 07, DG	. ,		8, LHR 12)
	(a)	161	(b)	116	.	(c)	159	(d)	760	,,
12.	` '	olar volume of	` '		ım at:	(-)				, RWP 09)
	(a)	S.T.P	(b)	127°C a	ind 1 atm	(c)	0°C and 2 atm	(d)	273K	,
13.	The or	der of rate of	diffusio	n of gas	es NH ₃ , SO ₂ ,	Cl₂ and (CO2 is:			
	(a)	$NH_3 > SO_2 > C$	$I_2 > CO_2$			(b)	$NH_3 > CO_2 > S$	$O_2 > Cl_2$		
	(c)	$Cl_2 > SO_2 > CO$				(d)	$NH_3 > CO_2 > C$	$I_2 > SO_2$		
14.		a is conductor		_						8, FSD 09)
	(a)	Bad	(b)	Poor		(c)	Good	(d)	None	_
15.		culate the pres					r the non-ideal	conditi	ons, alt	
		equation has		evelope	a. Inis is kno		Ala a .a ia a a	. :		(FSD 10)
	(a)	General gas eq		ation		(p)	Arrhenius equa		_	
16.	(c)	Clausius Clapey olute temperat			doubled and	(d)	van der Waal's			olumo of
10.	the ga		ui e oi a	ı yas ıs	doubled allu	pressure	(SGD 09, R			
	(a)	Remain unchan	ned			(b)	Increase four t		IIIV, DWI	, DGK II)
	(c)	Reduce to 1/4	igeu			(d)	Be doubled	iiiics		
17 .		re remaining o	constan	t. at wh	ich temperat			s will h	ecome t	wice of
		t is at 0°C.		-,						(RWP 08)
	(a)	546°C	(b)	200°C		(c)	546 K	(d)	273 K	
18.		orr is equal to:	. ,			` '		` '		(RWP 08)
	(a)	One atmospher	e	(b)	One Pascal	(c)	One mm of Hg	(d)	76 cm c	

19.	S I uni	t of pressure is	2.						(RWP 09)
	(a)	Torr	(b)	mm Hg	(c)	Nm ⁻²	(d)	Pound in	
20.	` '	reading of frag		of scent in air is due t			()		5, RWP 11)
	(a)	Effusion	(b)	Diffusion	(c)	Osmosis	(d)	Density.	_
21.	The va	lue of R (in Nn	ı K ⁻¹ mo	ol ⁻¹) is:	. ,		` ,	•	(MTN 08)
	(a)	8.214	(b)	8.314	(c)	0.0321	(d)	62.4	
22.	Which	of the following	ig will h	nave the same number	er of mo	les at S.T.P?			(MTN 08)
	(a)	280 cm 3 of CO $_2$			(b)	11.2 dm ³ of O ₂	and 32 g	of O2	
	(c)	44 g CO ₂ and 13	1.2 dm ³	of CO	(d)	28.0g N ₂ and 5	.6 g O₂ o	f oxygen	
23.	The ab	solute zero is:							(MTN 09)
	(a)	Attainable			(b)	May be attainal	ole		
	(c)	Un attainable in	gaseous	s state	(d)	My not be attai	nable		
24.	Standa	rd temperatur	e:						(MTN 09)
	(a)	0°C	(b)	75°C	(c)	273°C	(d)	100°C	
25.	The co	lour of NO₂ gas	s is:						(BWP 08)
	(a)	Yellow	(b)	Green	(c)	Brown	(d)	Blue	
26.	Pilots f	feel uncomfort	able bro	eathing in unpressur	ized cab	ins:			(BWP 08)
	(a)	Due to high pre	ssure of	CO ₂	(b)	Due to low pres	ssure of (O_2	
	(c)	Due to fatigue			(d)	Due to low pres	ssure of (CO_2	
27.	Plasma	as are found in	everyt	hing from sun to:					(DGK 08)
	(a)	Atoms	(b)	Molecules	(c)	Electrons	(d)	Quarks	
28.	Which	gas will diffus	e more	rapidly among the fo	llowing	?			(DGK 10)
	(a)	N_2	(b)	H ₂	(c)	CO	(d)	NH_3	
29.	Which	gas diffuses m	ost rap	idly?					(LHR 06)
	(a)	HCI	(b)	NH_3	(c)	SO ₂	(d)	CO_2	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
а	С	а	U	d	b	а	С	b	а	U	b	b	U	d
16	17	18	19	20	21	22	23	24	25	26	27	28	29	
b	С	С	С	b	b	а	С	a	С	b	d	B _b	b	

4

LIQUIDS & SOLIDS

1.	Which	one is the exa	mple of	cubic crystals?				
	(a)	Graphite	(b)	Sugar	(c)	Borax	(d)	Diamond
2.	The bo	oiling point of t		_				
	(a)	Increase down		p	(b)	Decrease down		up
	(c)	Remains consta			(d)	can't be predic	ted	
3.	-	-	-	a closed container de	-			
	(a)	Surface area of		er	(b)	Temperature		
_	(c)	Amount of liquid			(d)	All of these		
4.	-			the axes and angles				
	(a)	Tetragonal syst	em		(b)	Monoclinic syst	em	
_	(c)	Triclinic system		_	(d)	Cubic system		
5.		rree hills water		-	(-)	000	(-1)	F00C
_	(a)	98°C	(b)	100℃	(c)	0°C	(d)	50°C
6.		ination number			(-)	F	(4)	Civ
7	(a)	One	(b)	Two	(c)	Four	(d)	Six
7.		369 torr		en external pressure 700 torr		760 torr	(4)	(LHR 14) 1489 torr
8.	(a)		(b) to Lond	on forces of interacti	(c)	700 1011	(d)	1409 (011
0.	(a)	Ionic	(b)	Covalent	(c)	Molecular	(d)	Metallic
9.				ween ions and water			(u)	Metallic
Э.	(a)	Dipole-induced			(b)	Dipole-dipole fo	orces	
	(c)	Ion dipole force		1003	(d)	London dispers		7C
10.				are present in carbon	_ ` ´	•	1011 101 00	.5
	(a)	Two	(b)	Three	(c)	ree Four	(d)	Five
11.		tion temperatu			(5)		(4)	
	(a)	95.5°C	(b)	13.2℃	(c)	0°C	(d)	128.5°C
12.		ystal of diamor	` '		()		()	
	(a)	Ionic	(b)	Covalent	(c)	Molecular	(d)	Metallic
13.		hydrocarbon is			()		` '	
	(a)	Methane	(b)	Propane	(c)	Ethane	(d)	Hexane
14.	The ex	cample of hexa	gonal s	ystem is:				(LHR 11)
	(a)	Sulphur	(b)	NaCl	(c)	Graphite	(d)	Diamond
15 .	Hydro	gen bonding is	strong	est in:				
	(a)	HI	(b)	HBr	(c)	HCl	(d)	HF
16.	Allotro	ppy is the prope	erty of:					(GRW 11)
	(a)	Element	(b)	Compound	(c)	Mixture	(d)	Ions
17.				n liquid water.				(LHR 10)
	(a)	9%	(b)	10%	(c)	11%	(d)	12%
18.		ure of ice is:						
	(a)	Tetrahedral	(b)	Octahedral	(c)	Cubic	(d)	Triclinic
19.				unit cell dimensions				
	(a)	$a = b \neq c \alpha = 0$			(b)	$a \neq b \neq c \alpha =$		
	(c)	$a \neq b \neq c \alpha = \beta$			(d)	$a \neq b \neq c \alpha =$	$\beta = \gamma \neq 9$	90°
20.				e significant for:				
	(a)	Polar molecules	(b)	Ionic solids	(c)	Metals	(d)	Non polar molecule

21.	Which	substance she	ows ani	sotropic behavior in	electrica	al conductivity?	?		
	(a)	Diamond	(b)	Graphite	(c)	KCl	(d)	Ice	
22.		oilina points o		alkanes are greater		ose of lower a		due to the reaso	ns
	that:	,g po		amanes are greater					
		Higher alkanes	have ar	aatar numbar of atoms					
	(a)			eater number of atoms					
	(b)	•	, -	her alkanes is greater					
	(c)	Higher alkanes	_	•					
	(d)	Higher alkanes	have gre	eater hydrogen bonding					
23.	Water	has maximum	n density	v at:					
	(a)	4°C	(b)	, 0∘C	(c)	100°C	(d)	10°C	
24.		-		rphic solids and exis		100 0	(4)	10 0	
27.		Cubic form		-		Triannal form	(4)	Totus gons!	
-	(a)		(b)	Orthorhombic form	(c)	Trigonal form	(d)	Tetragonal	
25.		ansition tempe							
	(a)	13.2℃	(b)	95.5℃	(c)	128 ℃	(d)	32.02°C	
26.	The di	stillation of liq	ıuid und	ler reduced pressure	is called	d:			
	(a)	Destructive dis	tillation		(b)	Vacuum distilla	tion		
	(c)	Fractional distil	llation		(d)	Simple distillati	on		
27.		ructure of sod		oride is:	()	'			
	(a)	Body centered			(b)	Face centered	cube		
	(c)	Simple cube	cubc		(d)	None	cubc		
28.			nrocon	t between the ions a	` '		oc aro l	(nown ac	
20.				it between the ions a				Miowii as.	
	(a)	Dipole induced			(b)	Ion-dipole force			
	(c)	Dipole-dipole fo			(d)	London dispers	sion for	ces	
29.		a crystalline su	ubstance	e and has:					
	(a)	Ionic crystals			(b)	Metallic crystal			
	(c)	Covalent crysta	als		(d)	Molecular crystal	ls		
30.	Which	of the followi	ng liquid	d has highest boiling	point?				
	(a)	HCI	(b)	HBr	(c)	H ₂ O	(d)	Br ₂	
31.		ımber of Na+ i	ons whi	ch surround each Cl		he NaCl crystal			
	(a)	4	(b)	_		_		12	
32	(a) Liquid	4 s evanorate a	(b)	6	(c)	8	(d)	12 onstant for a liqu	ıid
32.	Liquid	4 s evaporate a		_	(c)	8	(d)		uid
32.	Liquid: then:	-	t every	6 temperature. When	(c) the ten	8 nperature beco	(d)		uid
32.	Liquida then: (a)	Rate of evapor	t every ation is g	6 temperature. When greater than the rate of	(c) the ten condens	8 nperature beconstion.	(d)		uid
32.	Liquid: then: (a) (b)	Rate of evapor The rate of cor	t every ration is good	6 temperature. When greater than the rate of on is greater than the ra	(c) the ten condens te of eva	8 nperature beconstion. apporation.	(d)		uid
32.	Liquida then: (a) (b) (c)	Rate of evapor The rate of cor The rate of cor	t every ration is goodensation andensation	temperature. When greater than the rate of on is greater than the rate on and evaporation becomes	(c) the ten condens te of eva	8 nperature beconstion. apporation.	(d)		uid
	Liquidenten: (a) (b) (c) (d)	Rate of evapor The rate of cor The rate of cor Depends upon	t every ration is g ndensation ndensation the natu	temperature. When greater than the rate of on is greater than the rate on and evaporation become of the liquid	(c) the ten condens te of eva omes equ	8 nperature beconstion. apporation.	(d)		uid
32. 33.	Liquide then: (a) (b) (c) (d) Ionic s	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con	t every ration is go ndensation the natu	temperature. When greater than the rate of on is greater than the rate on and evaporation become of the liquid electrical current be	(c) the ten condensate of eva omes equ	8 nperature beconstitution. aporation. al	(d) omes c	onstant for a liqu	uid
	Liquide then: (a) (b) (c) (d) Ionic s (a)	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha	ration is go indensation indensation the nature iduct the ve transle	temperature. When greater than the rate of on is greater than the rate on and evaporation become of the liquid electrical current beatory motion	(c) the ten condens te of eva omes equ ecause: (b)	8 nperature beconstion. apporation.	(d) omes c	onstant for a liqu	uid
	Liquide then: (a) (b) (c) (d) Ionic s	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha	ration is go indensation indensation the nature iduct the ve transle	temperature. When greater than the rate of on is greater than the rate on and evaporation become of the liquid electrical current be	(c) the ten condens te of eva omes equ ecause: (b)	8 nperature beconstitution. aporation. al	(d) omes c	onstant for a liqu	uid
	Liquide then: (a) (b) (c) (d) Ionic s (a) (c)	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha The coordination	ration is goodensation densation the natural duct the ve transloon number	temperature. When greater than the rate of on is greater than the rate of an and evaporation become of the liquid a electrical current beatory motion er of the ion is very high	(c) the ten condens te of eva omes equ ecause: (b)	8 nperature beconstitution. aporation. al	(d) omes c	onstant for a liqu	uid
	then: (a) (b) (c) (d) Ionic s (a) (c) (d)	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha The coordination	ration is goodensation densation the natural duct the ve transloon number	temperature. When greater than the rate of on is greater than the rate on and evaporation become of the liquid electrical current beatory motion	(c) the ten condens te of eva omes equ ecause: (b)	8 nperature beconstitution. aporation. al	(d) omes c	onstant for a liqu	uid
33.	then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha The coordination Strong covalen	ration is goodensation indensation the natural duct the ve translation number to bonds a	temperature. When greater than the rate of on is greater than the rate of an and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their structure.	(c) the ten condens te of eva omes equ ecause: (b) n cture	8 nperature beconstion. apporation. al	(d) omes co	onstant for a liqu	uid
33. 34.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a)	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha The coordination Strong covalen bhous means: Ordered	ration is goodensation indensation the natural duct the ve translation number to bonds at (b)	temperature. When greater than the rate of on is greater than the rate of an and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their struck.	(c) the ten condens te of eva omes equ ecause: (b)	8 nperature beconstitution. aporation. al	(d) omes c	onstant for a liqu	uid
33.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha The coordination Strong covalent phous means: Ordered zability is mea	ration is goodensation indensation the nature the ve transle on number to bonds at the control of the control o	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their struck. Arranged extent of distortion:	(c) the ten condens te of eva omes equ ecause: (b) n cture (c)	8 nperature become ation. apporation. ual Free electrons Shaped	(d) omes contains are less (d)	Shapeless	uid
33. 34. 35.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a)	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha The coordinatic Strong covalen bhous means: Ordered zability is mea Qualitative	ration is goodensation indensation the natural duct the ve translet on number to bonds at (b) sure of (b)	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their structure. Arranged extent of distortion: Quantitative	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c)	8 nperature become ation. apporation. all Free electrons Shaped Systematic	(d) omes c are less (d) (d)	onstant for a liqu	uid
33. 34.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a) Heat c	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha The coordinatio Strong covalen shous means: Ordered zability is mea Qualitative hange for one	ration is goodensation indensation the natural duct the ve transle on number to bonds a (b) sure of (b) e mole of	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their structure. Arranged extent of distortion: Quantitative f a solid during converged.	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c) erting in	8 nperature beconstion. apporation. all Free electrons Shaped Systematic ato liquid is call	(d) omes c are less (d) (d) (d) led:	Shapeless None of these	uid
33. 34. 35.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a) Heat c (a)	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha The coordinatio Strong covalen shous means: Ordered zability is mea Qualitative hange for one Molar heat of v	ration is goodensation indensation the natural ve transle on number to bonds a (b) sure of (b) a mole of vaporizati	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their structure. Arranged extent of distortion: Quantitative f a solid during converged.	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c) erting in (b)	8 nperature beconstion. apporation. apporation. al Free electrons Shaped Systematic ato liquid is call Molar heat of s	(d) are less (d) (d) (d) led: sublimat	Shapeless None of these	uid
33. 34. 35. 36.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a) Heat c (a) (c)	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha The coordinatio Strong covalen chous means: Ordered zability is mea Qualitative thange for one Molar heat of the	ration is goodensation indensation the natural duct the ve transle on number bonds at bonds a	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very high are present in their structure. Arranged extent of distortion: Quantitative f a solid during convergence on	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c) erting in (b) (d)	8 nperature become ation. apporation. al Free electrons Shaped Systematic ato liquid is call Molar heat of senthalpy change	(d) are less (d) (d) (d) led: sublimat	Shapeless None of these	uid
33. 34. 35.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a) Heat c (a) (c) Which	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha The coordinatio Strong covalen shous means: Ordered zability is mea Qualitative hange for one Molar heat of v n of the follow	ration is goodensation in densation the natural duct the ve transle on number to bonds a (b) sure of (b) mole of vaporization ing does	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their structure. Arranged extent of distortion: Quantitative f a solid during converse not form a molecular solid soli	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c) erting in (b) (d) ar crysta	8 nperature becomes ation. apporation. apporation. al Free electrons Shaped Systematic ato liquid is call Molar heat of see Enthalpy changes at?	(d) are less (d) (d) (ed: sublimatige	Shapeless None of these	uid
33. 34. 35. 36.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a) Heat c (a) (c) Which (a)	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha The coordinatio Strong covalen shous means: Ordered zability is mea Qualitative hange for one Molar heat of of n of the follow Ice	ration is goodensation in densation the natural duct the ve transle on number to bonds at bon	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very high are present in their structure. Arranged extent of distortion: Quantitative f a solid during convergence on	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c) erting in (b) (d)	8 nperature become ation. apporation. al Free electrons Shaped Systematic ato liquid is call Molar heat of senthalpy change	(d) are less (d) (d) (d) led: sublimat	Shapeless None of these	uid
33. 34. 35. 36.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a) Heat c (a) (c) Which (a)	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha The coordinatio Strong covalen shous means: Ordered zability is mea Qualitative hange for one Molar heat of v n of the follow	ration is goodensation in densation the natural duct the ve transle on number to bonds at bon	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their structure. Arranged extent of distortion: Quantitative f a solid during converse not form a molecular solid soli	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c) erting in (b) (d) ar crysta	8 nperature becomes ation. apporation. apporation. al Free electrons Shaped Systematic ato liquid is call Molar heat of see Enthalpy changes at?	(d) are less (d) (d) (ed: sublimatige	Shapeless None of these	uid
33.34.35.36.37.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a) Heat c (a) (c) Which (a)	Rate of evapor The rate of cor The rate of cor Depends upon solid don't con Ions do not ha The coordinatio Strong covalen shous means: Ordered zability is mea Qualitative hange for one Molar heat of of n of the follow Ice	ration is goodensation in densation the natural duct the ve transle on number to bonds at bon	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their structure. Arranged extent of distortion: Quantitative f a solid during converse not form a molecular solid soli	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c) erting in (b) (d) ar crysta	8 nperature becomes ation. apporation. apporation. al Free electrons Shaped Systematic ato liquid is call Molar heat of see Enthalpy changes at?	(d) are less (d) (d) (ed: sublimatige	Shapeless None of these	uid
33.34.35.36.37.38.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a) Heat c (a) (c) Which (a) Evapor (a)	Rate of evapor The rate of cor The rate of cor Depends upon Solid don't con Ions do not ha The coordinatic Strong covalen Shous means: Ordered Zability is mea Qualitative Change for one Molar heat of the Molar heat of for Molar heat of for The follow Ice Tration causes: Cooling	ration is goodensation in densation the natural duct the ve transle on number to bonds at the control of the co	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their structure. Arranged extent of distortion: Quantitative f a solid during conversion solid during conversion.	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c) erting in (b) (d) ar crysta (c)	8 nperature become ation. apporation. apporation. al Free electrons Shaped Systematic ato liquid is call Molar heat of seen thalpy changes al? Iodine	(d) are less (d) (d) led: sublimatinge (d)	Shapeless None of these tion Sugar	uid
33.34.35.36.37.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a) Heat c (a) (c) Which (a) Evapor (a) Diamo	Rate of evapor The rate of cor The rate of cor Depends upon Solid don't con Ions do not ha The coordinatic Strong covalen Shous means: Ordered Zability is mea Qualitative Change for one Molar heat of the Molar heat of for Ice Tation causes: Cooling Ind and graphi	ation is goodensation in the natural duct the ve transle on number to bonds at the control of th	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their structure. Arranged extent of distortion: Quantitative f a solid during conversion on the structure of the ion is very higher present in their structure. Arranged extent of distortion: Quantitative f a solid during conversion on the structure of the ion is not form a molecular graphite. Heating example of:	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c) erting in (b) (d) ar crysta (c) (c)	8 nperature beconstion. apporation. apporation. all Free electrons Shaped Systematic ato liquid is call Molar heat of senthalpy changes al? Iodine Boiling	(d) are less (d) (d) (ed) (ed) (bed) (d) (d) (d)	Shapeless None of these tion Sugar irritation	uid
33. 34. 35. 36. 37. 38. 39.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a) Heat c (a) (c) Which (a) Evapor (a) Diamo (a)	Rate of evapor The rate of cor The rate of cor Depends upon Solid don't con Ions do not ha The coordinatic Strong covalen Shous means: Ordered Zability is mea Qualitative hange for one Molar heat of the Molar heat of for Ice Tof the follow Ice Tation causes: Cooling Tod and graphi Isomorphism	ation is goodensation in the natural duct the ve transle on number to bonds at the material bonds at the mole of (b) at mole of (b) at mole of (b) (b) (b) (b) (c) (d) (d)	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their strue. Arranged extent of distortion: Quantitative f a solid during conversion s not form a molecular Graphite Heating example of: Polymorphism	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c) erting in (b) (d) ar crysta (c)	8 nperature become ation. apporation. apporation. al Free electrons Shaped Systematic ato liquid is call Molar heat of seen thalpy changes al? Iodine	(d) are less (d) (d) led: sublimatinge (d)	Shapeless None of these tion Sugar	uid
33.34.35.36.37.38.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a) Heat c (a) (c) Which (a) Evapor (a) Diamo (a) Dipole	Rate of evapor The rate of cor The rate of cor Depends upon Solid don't con Ions do not ha The coordinatic Strong covalen Shous means: Ordered Zability is mea Qualitative Change for one Molar heat of the Molar heat of for Molar heat of for Ice Tration causes: Cooling Isomorphism Isomorphism Induced dipo	ation is goodensation in densation the natural duct the ve transle on number to bonds at the mole of (b) sure of (b) a mole of vaporization ing does (b) (b) (b) ite are e (b) le forces	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their structure. Arranged extent of distortion: Quantitative f a solid during conversion sont form a molecular Graphite Heating example of: Polymorphism sare also called:	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c) erting in (b) (d) ar crysta (c) (c) (c)	8 nperature becomes ation. apporation. all Free electrons Shaped Systematic nto liquid is call Molar heat of senthalpy change al? Iodine Boiling Isomerism	(d) are less (d) (d) (ed) (ed) (bed) (d) (d) (d)	Shapeless None of these tion Sugar irritation	uid
33. 34. 35. 36. 37. 38. 39.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a) Heat c (a) (c) Which (a) Evapor (a) Diamo (a) Dipole (a)	Rate of evapor The rate of cor The rate of cor Depends upon Solid don't con Ions do not ha The coordinatic Strong covalen Shous means: Ordered Zability is mea Qualitative Change for one Molar heat of the Molar heat of for Ice ration causes: Cooling Isomorphism Isomorphism Induced dipo London dispers	ation is goodensation in densation the natural duct the ve transle on number to bonds at the mole of (b) sure of (b) a mole of vaporization ing does (b) (b) (b) ite are e (b) le forces	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their structure. Arranged extent of distortion: Quantitative f a solid during conversion sont form a molecular Graphite Heating example of: Polymorphism sare also called:	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c) erting in (b) (d) ar crysta (c) (c) (c) (b)	8 nperature becomes ation. apporation. all Free electrons Shaped Systematic nto liquid is call Molar heat of senthalpy change al? Iodine Boiling Isomerism Debye forces	(d) are less (d) (d) led: sublimative (d) (d) (d)	Shapeless None of these tion Sugar irritation	uid
33. 34. 35. 36. 37. 38. 39.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a) (c) Which (a) Evapor (a) Diamo (a) Dipole (a) (c)	Rate of evapor The rate of cor The rate of cor Depends upon Solid don't con Ions do not ha The coordinatic Strong covalen Shous means: Ordered Zability is mea Qualitative Change for one Molar heat of the Molar heat of for Ice Tation causes: Cooling Isomorphism Isomorphism Induced dipo London dispers Huckel forces	ation is goodensation the natural duct the vertransle on number to bonds at the material to the sure of (b) at mole of vaporization ing does (b) (b) (b) (b) (c) (d) (e) (e) (f) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very high are present in their strue. Arranged extent of distortion: Quantitative on solid during converge on the converge of a solid during converge on the converge of the converge o	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c) erting in (b) (d) ar crysta (c) (c) (c)	8 nperature becomes ation. apporation. all Free electrons Shaped Systematic nto liquid is call Molar heat of senthalpy change al? Iodine Boiling Isomerism	(d) are less (d) (d) led: sublimative (d) (d) (d)	Shapeless None of these tion Sugar irritation	uid
33. 34. 35. 36. 37. 38. 39.	Liquide then: (a) (b) (c) (d) Ionic s (a) (c) (d) Amorp (a) Polariz (a) (c) Which (a) Evapor (a) Diamo (a) Dipole (a) (c)	Rate of evapor The rate of cor The rate of cor Depends upon Solid don't con Ions do not ha The coordinatic Strong covalen Shous means: Ordered Zability is mea Qualitative Change for one Molar heat of the Molar heat of for Ice Tation causes: Cooling Isomorphism Isomorphism Induced dipo London dispers Huckel forces	ation is goodensation in densation the natural duct the ve transle on number to bonds at the condition of th	temperature. When greater than the rate of on is greater than the rate of on and evaporation become of the liquid electrical current beatory motion er of the ion is very higher present in their structure. Arranged extent of distortion: Quantitative f a solid during converge on solid during converge from the converge	(c) the ten condens te of eva omes equ ecause: (b) n cture (c) (c) erting in (b) (d) ar crysta (c) (c) (d) (d)	8 nperature becomes ation. apporation. all Free electrons Shaped Systematic nto liquid is call Molar heat of senthalpy change al? Iodine Boiling Isomerism Debye forces	(d) are less (d) (d) (ed) (ed) (d) (d) (d) (Shapeless None of these tion Sugar irritation	uid

42.	Which	n statement is	incorrec	ct about tetragonal cr	ystal sy	stem?		
	(a)	$a = b \neq c$	(b)	$a \neq b = c$	(c)	$\alpha = \beta = \gamma = 90$	۰ (d)	None of these
43.	Crysta	al system shov		amond is:				
	(a)	Cubic	(b)	Tetragonal	(c)	Monoclinic	(d)	Hexagonal
44.	The st	trongest acid a	_	alogen acids is:				
	(a)	HF	(b)	HCl	(c)	HBr	(d)	HI
45.	The n	umber of Cl ⁻ ic	ons per เ	unit cell of NaCl is:				
	(a)	8	(b)	6	(c)	4	(d)	2
46.	How I	much more sp	ace is oc	cupied by water on f	reezing:			
	(a)	9%	(b)	8%	(c)	7%	(d)	6%
47.	Boilin		at Mou	nt Everest would be:				
	(a)	98°C	(b)	100°C	(c)	101℃	(d)	69°C
48.	Allotr	opy is the prop	perty of:	1				
	(a)		(b)	Element	(c)	Atoms	(d)	Mixture
49.	Hydro	ogen bonding i		num for:				
	(a)	Ethanol	(b)	Water	(c)	Benzene	(d)	Diethyl ether
50 .	The e			t in more than one cr	ystalline	e forms:		(LHR 12, 13)
	(a)	. ,	(b)	Isotropy	(c)	Isomorphism	(d)	Polymorphism
51.	Dry ic	•		ample of solid:				(LHR 14)
	(a)	Covalent	(b)	Molecular	(c)	Ionic	(d)	Metallic
52.	Glyce	rine decompos						(LHR 14)
	(a)	Melting point		Boiling point	(c)	Freezing point	(d)	Critical point
53.	Which	n one is the fol	llowing i	is a pseudo solid:				(LHR, GRW 14)
	(a)	CaF ₂	(b)	NaCl	(c)	Borax	(d)	Glass

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
d	а	b	С	а	d	d	С	С	b	b	b	d	С	d
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
а	а	С	b	d	b	b	а	b	С	b	b	b	а	С
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
b	С	а	d	b	С	b	а	d	b	а	b	а	d	С
46	47	48	49	50	51	52	53							
а	Ь	h	h	а	h	h	Ь							

5

ATOMIC STRUCTURE

1.	Maxir	num number o	f electr	ons in a subshell is	s aiven bv:			(LHR C	5, 14)
	(a)	2 \ell + 1	(b)	$2\ell-1$	(c)	$2(2\ell + 1)$	(d)		
2.	An or	bital can accon		te maximum electr		. ,	• •	(LHR 14, GR	W 06)
	(a)	10	(b)	14	(c)	6	(d)	2	
3.	How I	many times the		of neutron is great	er than tha	at of electron?		(GR	W 07)
	(a)	1480	(b)	2000	(c)	200	(d)	1840	
4.	Lyma	n Series is obta	ained w	hen electron in an	atom jum	ps from higher	energy	/ level to: 🤇	GRW 07
	(a)	Ground level	(b)	2 nd level	(c)	3 rd level	(d)	4 th level	
5.	When		omplet	e, the entering ele	ctron goes	into: (LHR 07, S	GD 09, I	RWP 10, MTN	, DGK 11
	(a)	7f	(b)	7s	(c)	7p	(d)	7 <u>d</u>	
6.	-	n series occur						(SGD 10,	
	(a)	Visible region	(b)	U.V. region	(c)	I.R. region	(d)	None of the	ese
7.	$\frac{e}{m}$ va	lue for positive	rays is	maximum for:		(I	LHR 08	13, GRW 09,	MTN 07
	(a)	Hydrogen	(b)	Helium	(c)	Oxygen	(d)	Nitrogen	
8.				model, radius of s					HR 08)
	(a)	0.529 Å	(b)	2.116 Å	(c)	4.0 Å	(d)	5.0 Å	,
9.				produced when el				to	orbit.
	(a)	1 st	(b)	2 nd	(c)	3 rd	(d)		RW 08)
10.		lectronic confi		n of an atom is 1s ²		The number of			
	atom				, , ,		•		RW 08)
	(a)	0	(b)	2	(c)	4	(d)	6	
11.	Négat	tive charge on	cathod	e rays we establisł	ned by:		` '	(G	RW 09)
	(a)	William Crook	(b)	J. Perrin	(c)	R.A Millikan	(d)	Hittrof	
12.	An or	bital which is s	pherica	al and symmetrical	is:			(L	HR 09)
	(a)	s-orbital	(b)	p-orbital	(c)	d-orbital	(d)	f-orbital	
13.	Angst	rom is the unit	t of:					(LI	HR 09)
	(a)	time	(b)	length	(c)	mass	(d)	frequenc <u>y</u>	
14.		of electron is:						(L	HR 11)
	(a)	9.1095×10^{31}			(b)	9.1095×10^{-31}			
	(c)	9.1095×10^{-27}			(d)	9.1095×10^{-31}	g		
15 .		on was discov	-						HR 11)
	(a)	Chadwick	(b)	C.D. Anderson	(c)	Rutherford	(d)	Goldstein	
16.				s on Beryllium (Be					
	(a)	Natural radioa	•		(b)	Artificial radioa	ctivity	(G	RW 11)
	(c)	Pauli's exclusion			(d)	Hund's rule			
17.			_	spectrum lies in th	_			(FSD 07, G	
	(a)	Ultraviolet	(b)	Visible	(c)	Infrared	(d)	Microwave	
18.		alue of Planck			/ \	C CO 40-21 7	<i>(</i> 1)		HR 10)
10	(a)	$6.62 \times 10^{-34} \text{ J.s}$		$6.62 \times 10^{-27} \text{ J.s}$	(c)	$6.62 \times 10^{-21} \text{ J.s}$	(d)	6.62×10^{-3}	
19.	-	erties of waves		\\/	/ - \	Гиания::-	(4)		SD 09)
20	(a)	Wave length	(b)	Wave number	(c)	Frequency	(d)	All	CD 40
20.	wnich		ectly re	epresents the Heis	enberg's u	-, -	cipie?		SD 10)
	(a)	$\Delta x \Delta P = \frac{h}{4\pi}$	(b)	$\Delta x \Delta P > \frac{h}{4\pi}$	(c)	$\Delta x \Delta P \ge \frac{h}{4\pi}$	(d)	$\Delta x \Delta P \leq \frac{h}{4\pi}$	<u>-</u> -

21.	65 29 Cu	+ 1 n	66 Cu + `	"x" What is "x"			(LHR 1	4, BWP 1	1, FSD 10)
	(a)	Electrons	(b)	Protons	(c)	Beta rays	(d)	Gamma	ray
22.		umber of ne	utrons pre	sent in $\frac{39}{19}$ K is:					10, FSD 11)
	(a)	39	(b)	18	(c)	20	(d)	19	
23.				the electron goes in		4.1	(-1)		(SGD 10)
24	(a)	4p	(b)	3d	(c)	4d	(d)	4f	(CCD 11)
24.		Visible	(b)	eries lies in the regio U.V.		Near I.R	(d)	Far I.R	(SGD 11)
25.	(a) Which			o.v. als is dumb bell shap	(C)	Neal I.N	(u)		(RWP 08)
25.	(a)	s-orbital	(b)	p-orbital	(c)	d-orbital	(d)	f-orbital	
26.				proton with the emiss					(RWP 08)
	(a)	Positron	(b)	Neutrino	(c)	Beta Particle	(d)	Helium ı	
27.	` '	ass of an ox	` ,	ı is:	()		` ,		(RWP 10)
	(a)	2.657×10^{-2}		$2.657 \times 10^{23} g$	(c)	16 g	(d)	32 g	
28.	The el			orbital are distinguis	hed by:				(MTN 07)
	(a)	Magnetic qu			(b)	Principal quanto		oer	
	(c)	Azimuthal qu			(d)	Spin quantum r	ıumber		
29.		ass of proto				4 4 7 4 9 27	<i>(</i> 1)		(MTN 08)
20	(a)	$+1.6 \times 10^{-19}$	` ,	-1.6×10^{-19}	(c)	1.672×10^{-27}	(d)	9.1 × 10	
30.				tradicted by:	/ L\	Davilla avalvaia			(MTN 08)
	(a) (c)	Photo electri		, principlo	(b)	Pauli's exclusion		ie	
31.	` '	Heisenberg's es X-Rays ha			(d)	Aufbau principle	=		(MTN 09)
J1 .	(a)	Longer	(b)	Smaller	(c)	Same	(d)	Differen	
32.				or the 3s sub-shell?	(-)		()		(MTN 09)
	(a)	2	(b)	1	(c)	5	(d)	3	
33.		de rays cons		Dunkana	(-)	Mandon	(-1)		(MTN 09)
34.	(a)	Electrons •subshell co	(b)	Protons	(c)	Neutrons	(d)	Nucleon	s (MTN 09)
34.	(a)	5-orbitals	(b)	6-orbitals	(c)	7-orbitals	(d)	10-orbit	
35.		ls having sa			(0)	7 01 51 613	(4)		0, BWP 09)
	(a)	Hybrid orbita	als (b)	Valence orbitals	(c)	d-orbitals	(d)	Degene	r <u>ate orbita</u> ls
36.		ve rays were					<i>(</i> 1)		(MTN 11)
27	(a)	J.J. Thomson		Rutherford	(c)	William Crooks	(d)	E. Golds	
37.	(a)	of one mole	(h)	1 15: 0 184 ma	(c)	1.673 mg	(d)	1.008 m	(MTN 11)
38.	For th	ep sub shel	l the azimı	0.184 mg uthal quantum numb	er "⁄" is:	1.075 mg	(u)		(BWP 08)
	(a)	2	(b)	3	(c)	zero	(d)	1	
39.	If an e		ee from th	e attraction of nucle					(BWP 08)
40	(a)	Negative	(b)	Positive	(c)	Zero	(d)	None of	
40.		760 torr		nt, the pressure of ga 0.1 torr		0.01 torr	(d)	10 torr	(BWP 10)
41.	(a) Splitti		(b) al lines wh	en atoms are subjec	(c) ted to s				
	(a)	Zeeman effe		ien atomo are oabjee	(b)	Stark effect			P 10, 11)
	(c)	Compton eff			(d)	Photoelectric ef	fect	<u></u>	
42.				eries lies in ultraviol			<i>(</i> 1)		(DGK 08)
43	(a)	Lyman	(b)	Balmer	(c)	Paschen	(d)	Brackett	
43.	(a)	nape of `p' or Double dum		(b) Spherical	(c)	Dumb-bell	(d)	Complic	(DGK 08)
44.		of Rydberg's			(C)	Dullib-bell	(u)		(DGK 10)
• • •	(a)	1.7904×10^{-1}			(b)	1.9768×10 ⁷ m ⁻¹			
	(c)	1.09678×10^{-1}	0 ⁷ m ⁻¹		(d)	$1.6 imes 10^7 \ m^{-1}$			
45.			•	m number is 3 then '			<i>(</i>)		(DGK 11)
16	(a)	5 values	(b)	7 values	(c)	2 values	(d)	3 values	
46.	(a)	number of sp 4	pectrai reg (b)	j ions in sunlight spec 6	ctrum is: (c)	7	(d)	8	(LHR 10)
	(~/	-	(~)	=	(-)	-	\~/	-	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	d	d	а	С	b	a	b	С	b	С	a	b	b	a
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
b	b	а	d	С	d	С	b	а	b	b	а	d	С	С
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
.b	d	а	а	d	d	а	d	С	С	а	а	С	С	b

46

6

CHEMICAL BONDING

1.	Which	of the followi	ng mole	cules has a co	ordinat	e covalent bon	– d?		(LHR 05)
	(a)	HCl	(b)	NaCl	(c)	NH ₄ Cl	(d)	AICI ₃	
2.		gle formed in		idization is:	()		` '		(GRW 06)
	(a)	120°	(b)	180°	(c)	109.5°	(d)	107.5°	
3.	Ionic o	compounds are	e mostly	obtained by t	he com	bination of gro	up:		(GRW 07)
	(a)	3 and 5	(b)	2 and 5	(c)	4 and 8	(d)	1 and 7	
4.	Dipole	moment of Co	O₂ is:						(GRW 07)
	(a)	1.84D	(b)	Zero D	(c)	0.95 D	(d)	2.2 D	
5.	In sp ²	hybridization,	the orb	itals are orient	ted at a	n angle of:			(LHR 07)
	(a)	109.5°	(b)	120°	(c)	180°	(d)	0 °	
6.	Which	of the following	ng spec	ies has unpaire	ed elect	ron in anti bor			
						_		TN 08, 10, BW	P, LHR 08)
	(a)	H_2	(b)	He ₂	(c)	O_2^{+2}	(d)	N_2^{-2}	
7.				ain maximum		-		_	(LHR 08)
_	(a)	One	(b)	Two	(c)	Three	(d)	Four	
8.				e have dipole r					(GRW 08)
_	(a)	Zero and 1.85.	` '	1.70 D and 1.80			ave zero	(d) None	of these
9.		-		stability and I	east rea				(GRW 07)
	(a)	They are very				` '		nells are compl	
10	(c)	They are gases		-1				nt in zero grou	
10.			•	electron in an		_		_	(GRW 09)
4.4	(a)	O ₂ +2	(b)	N ₂ ²⁻	(c)	B ₂	(d)	F ₂	N4 00 40)
11.				the formation		CCI	(4)	(FSD 11, GF	(W 09, 12)
12	(a)	NF ₃	(b)	CF ₄	(c)	CCl ₄	(d)	PCl ₅	(LUD 00)
12.		ost stable elen			(0)	Nabla gasas	(4)	Nama of these	(LHR 09)
12	(a)	Halogens	(b)	Lithium family	(c)	Noble gases	(d)	None of these	
13.	-	bridization of		sp ²	(c)	sp ³	(d)	not hybridized	9, LHR 14)
14	(a)	sp re ions are cal l	(b)	sp-	(c)	sp	(u)	not hybridized	(LHR 09)
14.		Cations		Anions	(c)	Molecules	(d)	Hydrated ions	
15.	(a)		(b)	H ₄ molecule is	(c) •	Molecules	(d)	nyurateu ions	(LHR 11)
15.	(a)	Six	(b)	Four	(c)	Five	(d)	Eight	(LIIKTII)
16.		I unit of dipole			(C)	TIVE	(u)		HR 10, 11)
10.	(a)	Joule	(b)	Debye	(c)	Coulomb meter	(d)	Nm ⁻²	IIK 10, 11)
17.				nate covalent b			(u)	INIII	(GRW 11)
	(a)	SO ₂	(b)	NH ₄ Cl	(c)	C ₂ H ₂	(d)	H ₂ O	
18.				element in the			(u)		, GRW 11)
10.	(a)	Oxygen	(b)	Nitrogen	(c)	Chlorine	(d)	Fluorine	, GRW II)
19.		angle between			(0)	CHIOTHIC	(u)	ridorine	(LHR 10)
	(a)	105.5°	(b)	107.5°	(c)	92°	(d)	95°	
20.		it of dipole mo	` ,		(0)	<i>J</i> 2	(4)	33	(LHR 10)
	(a)	pm	(b)	Debye	(c)	mC	(d)	All	
21.				sed by absorbi					. 09. GRW 10)
	(a)	Ionization ener		Electron affinity		Electro-negativi		Atomization e	
22.		imber of elect			(-)		-/ (~)		(GRW 10)
_ _ -	(a)	4	(b)	12	(c)	6	(d)	8	

23.	Which	of hydrogen ha	alides h	as highest %	of ionic	character?	(FSD 07,	. 09, RWP 09,	11, LHR 13)
	(a)	HCl	(b)	HBr	(c)	HF	(d)	HI	
24.	The ge	ometry of BeC	l2 is:						(FSD 07)
	(a)	Linear	(b)	Plane triangular	· (c)	Tetrahedral	(d)	None of these	e
25.	Orbital	s having same	energy	are called:					(FSD 08)
		Hybrid orbitals		Degenerate orb			orbitals	(d) Molecu	ılar <u>orbitals</u>
26.	The fou	ır equivalent s				e at angels of:			(FSD 08)
	(a)	120°	` '	107.5°	(c)	109.5°	(d)	104.5°	
27.					_	ecular orbitals		_	08, SGD 11)
	` '	N_2^{-2}	` '	O_2^{+2}	(c)	B_2	(d)	F ₂	
28.	_	ometry of etha							09, LHR 13)
	(a)	Tetrahedral	` '	Trigonal planar	` '	Linear	(d)	V-shaped	
29.					-	ained on the b			(SGD 09)
20	` '	VSEPR theory	` '	VB theory	(c)	MO theory	(d)	None of these	
30.		nd order of N ₂				2	(-1)	2	(SGD 09)
21	(a)	Zero	(b)	1	(c)	2 to covalent be	(d)	3	DCK CCD 10)
31.		NH ₄ Cl		NaCl		te covalent bo		AICI ₃	DGK, SGD 10)
32.	(a)	יאחאכו rbon atom in C	` '	INACI	(c)	HCI	(d)	AICI3	(SGD 10)
32.	(a)	sp ³ hybridized		sp ² hybridized	(c)	sp hybridized	(d)	dsp ² hybridize	
33.						alent bond wit			(SGD 11)
55.	(a)	NH ₃		H ₂ O	(c)	PH ₃	(d)	CH ₄	(SGD-III)
34.		of the followin	` '				(u)	CH4	(RWP 08)
J-1.	(a)	Na ⁺		Ca ⁺²	(c)	Cl-	(d)	None of these	
35.		bridization of o	(-)		(८)	Ci	(u)	None of these	(RWP 08)
.	(a)	sp		sp ²	(c)	sp ³	(d)	dsp ³	
36.		was proposed	` '	- P	(0)	SP .	(4)		(11, RWP 10)
	(a)	Moseley	-	Werner	(c)	Kossel	(d)	Mullikan	
37.	` '	mber of bonds	` '		` '		(-)		(RWP 10)
		One sigma and		•	(b)	One sigma and	two Pi		
		Three sigma onl			(d)	Two sigma and			
38.	` '	ometry of etha	•		` '	J			(RWP 11)
	(a)	Tetrahedral	(b)	Trigonal planne	r(c)	Linear	(d)	V-shaped	
39.	In Al ₂ O	₃ the ratio bet	ween th	ne ions is:					(MTN 07)
	(a)	1:2	(b)	2:1	(c)	2:3	(d)	3:2	
40.		theory was pr							(MTN 07)
		Nylholm and Gil			(c)	Lewis	(d)	Sidgewick	
41.		ecule is param							(MTN 07)
	(a)	Bonding electron		•	_				
	(b)	Bonding electron			_				
	(c)	Bonding electron			naing eie	ctron			
42	(d)	It contains unpa							(MTN 07)
42.						oole movement			(MTN 07)
	(a)	B is less electron			` ,	F is more electronical NH ₃ is pyramida	_		nlanar
43.	(c)	BF ₃ is pyramidal mber of bonds			(d)		ii wiile c	or3 is trigorial	(MTN 08)
73.		One sigma and			(b)	Two sigma bond	de		(MIII 08)
	` '	Two pi-bonds	OHE FI-DO	Jilu	(d)	None of these	15		
44.		of the followin	a molec	rule has zero (` '			(MTN	N 09, SWL 15)
T-F1	(a)	NH ₃		CHCl ₃	(c)	H ₂ O	(d)	BF ₃	
45.		wo atoms forn	` '		(=)	20	(4)	- , ,	(MTN 09)
	(a)	Released		Absorbed	(c)	Not changed	(d)	None of these	
46.	` '	um electroneg	` '		(=)	changea	(~)		(MTN 09)
	(a)	N	(b)	F	(c)	0	(d)	Cl	(-1111-05)
47 .		nd energy of h	` '	-	` '		(-)		(BWP 08)
	(a)	436	-	440	(c)	420	(d)	460	
	• •				• /		. ,		

48.	The v	alue of dipole	momer	nt of CS₂ is:					(BWP 09)
	(a)	0.12D	(b)	Zero	(c)	1.61 D	(d)	0.95 D	
49.	The r	nature of bond	in dian	ond is:					(BWP 10)
	(a)	Electrovalent	(b)	Covalent	(c)	Metallic	(d)	Co-ordinate co	ovalent
50 .	Octe	t rule is not fol	lowed i	n formation of:					(BWP 10)
	(a)	NF ₃	(b)	CF ₄	(c)	CCI ₄	(d)	PCI ₅	
51 .	The s	shielding effect	t is resp	onsible for:					(BWP 11)
	(a)	The decrease	in nucle	ar attractive influe	ence ov	er the valence e	lectrons		
	(b)	The increase i	in nuclea	r attractive influe	nce ove	er the valence el	ectrons		
	(c)	The decrease	repulsio	n between nucleu	s and i	nner electrons			
	(d)	The increase i	in attract	ion between nucl	eus an	d inner electrons	5.		
52.	The e	elements havin	ig low i	onization energ	y are:				(DGK 08)
	(a)	Non-metal	(b)	Metals	(c)	Semi-metal	(d)	Metalloids	
53.	Whic		<i>i</i> ing is n	ot isoelectronic	with	rest of the thre	ee?		(DGK 08)
	(a)	K ⁺	(b)	Na ⁺	(c)	Cl ⁻	(d)	S ⁻²	
54.	Whic	•	gen hal	ides has the hig	hest p	_	acid cha		(DGK 09)
	(a)	HCl	(b)	HBr	(c)	HF	(d)	HI	
55.				brid orbitals in s					(DGK 09)
	(a)	120°	(b)	107.5°	(c)	104.5°	(d)	109.5°	
56.		_		ids in Ethyne (C	_) are:			(DGK 10)
	(a)	Five	(b)	Three	(c)	Two	(d)	Four	
57.		_		aring of electro					(LHR 12)
	(a)	Ionic bond	(b)	Covalent bond	` '	Co-ordinate c	ovalent l	oond (d)	All of these
58 .				d takes place w					(LHR 13)
	(a)	Energy is abso		(b)		•	ercome	forces of attraction	on
	(c)			e equal to forces	-				
	(d)	Forces of attra	action ov	ercome forces of	repulsi	on			

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	b	d	b	b	d	b	С	b	b	d	С	b	a	а
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	b	d	С	С	b	b	С	а	b	С	а	а	С	d
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
а	b	d	а	С	d	b	а	С	a	d	d	а	d	а
46	47	48	49	50	51	52	53	54	55	56	57	58		
b	a	b	b	d	a	b	b	d	d	b	b	d		

7

THERMOCHEMISTRY

1.	Sponta	aneous reactio	ns are:							(LHR 05)
	(a)	Reversible	(b)	Irreversible	(c)	Non irr	eversible	(d) _	None of	these
2.	The st	andard heat ch	nanges	occur at:				(BWP 08,	GRW 06)
	(a)	25°C and 2 atm	1			(b)	298 K and 1 at	m		
	(c)	25°C and 1 mm	n hg			(d)	273 K and 1 atm	1		
3.	H ⁺ + C	OH⁻→ H₂O the o	change	in enthalpy for	r reaction	on Ís ca	lled:			(LHR 06)
	(a)	Heat of reaction	n	. ,		(b)	heat of formati	ion		
	(c)	Heat of neutral	ization			(d)	Heat of combu	stion		
4.				in a chemical	reaction	` '			s place	directly o
		ctly. It is calle								, BWP 10)
	(a)	Henry's law	(b)	Charlie's law		(c)	Hess's law	(d)	Graham	
5.			` '	one mole of	substar			` ,		
	called						,,			(LHR 07)
	(a)	Enthalpy of ato	mization			(b)	Enthalpy of ne	utralizati	on	
	(c)	Enthalpy of Cor				(d)	Enthalpy of for		•	
6.	` '			ction: CH _{4(g)} +	202(a)				halpy of	E(LHR 08)
U .	(a)	Formation	(b)	Combustion	(g) 2	(c)	Neutralization	(d)	Atomiza	
7.	` '	ard enthalpies	` '			(5)	ricati anzation	(4)		L, LHR 09)
7.	(a)	273 K	(b)	298K		(c)	373 K	(d)	All of th	
8.	` ,	cothermic proc	` '	25010		(5)	373 K	` '		V, LHR 11)
O .	(a)	Evaporation	(b)	Sublimation		(c)	Respiration	(d)	Boiling	
9.				cribes together	r the in					essure and
J.		e is called:	cii ucse	cribes together		cernar	chergy and th	c prout	ice or pr	(GRW 11)
	(a)	Enthalpy	(b)	Internal energy	,	(c)	Work	(d)	Free en	
10.	` '	tal heat conte				(C)	VVOIK	(u)	TICC CIT	(LHR 10)
10.	(a)	Entropy	(b)	Enthalpy		(c)	Temperature	(d)	Internal	l energy
11.	` '			:hermic, then it	t maan		remperature	(u)	Internal	(GRW 10)
	(a)			from surrounding			,			(GKW IV)
	(a) (b)			reactant is grea	_	•				
	(c)			reactants is less						
	(d)			from system to t						
12.		stant volume			inc surre	Juliulings).		(MTN O	7, FSD 08)
14.	(a)	AH	(b)	ΔE		(c)	ΔΡ	(d)	ΔV	, i 3D 00)
13.				small, the term	A (DV)					volvina
13.	(a)	Liquid and gas	g very s	siliali, the term	1 A (PV)	(b)	Liquid and soli		ocess III	(FSD 10)
	(a) (c)	Solids and gase)C			(d)	None of these	us		(FSD IO)
14.				reaction are ca	rried o					(SGD 10)
17.				Work	iiiieu o			(d)	None of	
15.	(a)	Pressure	(b)		it maa	(c)	Volume	(d)		
15.				othermic, than			i		MIN U/	, DGK 09)
	(a)			n surrounding to						
	(b)			n system to the s		_	0 400 atom			
	(c)			ducts is greater						
16	(d)			ctants is greater				f avete-	. i	(MTNLOO)
16.				ways for trans	Sierring	_	-	-		(MTN 08)
17	(a)	One	(b)	Two		(c)	Three	(d)	Four	(MTNLOO)
17.		is product of fo		1: Time		(c)	Displacement	(d)	Pressure	(MTN 09)
	ומו	v CHITTIE	(1))				DISDIACEDIEDI	((1)		_

18. The enthalpies of all elements in their standard states are: (MTN 10) (b) Zero Always positive (d) Always negative 19. Which of the following is not a state function? (MTN 11, LHR 14) Pressure (c) Temperature (b) Volume (d) Heat (DGK 08) 20. **Born-Haber's cycle is used to determine the:** (a) Combustion energy (b) Decomposition energy Formation energy Lattice energy (c) (d)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b	b	С	С	С	b	b	С	а	b	b	b	b	Ċ	С
16	17	18	19	20										
b	С	b	d	С										

8

CHEMICAL EQUILIBRIUM

1.	The va	alue of pH and	pOH of	pure water at	25°C is	approx	imately:			(LHR 05)
	(a)	14	(b)	7	(c)	$1 \times 10^{-}$		(d)	1×10^{14}	
2.		orium constant		seous eauilibri				()		(DGK 10)
	(a)	Ka	(b)	K _c	(c)	K _x		(d)	K_p	
3.		gate acid of a v						(-)	. 4	GRW 06)
•	(a)	Very strong acid	-	Weak acid	(c)		eak acid	(d)	strong a	
4.	` '	ity of pure wat	` '		(-)	,		(-)		IR 06, 12)
••	(a)	1	(b)	18	(c)	55.5		(d)	6	. K 00/ 112/
5.		uppression of					hase by addi		-	wn ions is
J .	knowr		ioinzaci	on or weak a	ciu oi i	u Weak	base by addin	ing one	01 165	(GRW 07)
	(a)	Buffer action	(b)	Common ion et	ffect	(c)	Buffer capacity	(d)	Ionizati	on effect
6.	` '	ding NH ₄ Cl to N						(4)	101112461	(LHR 08)
O.	(a)	Increases	(b)	Decreases	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(c)	Remain same	(d)	Increas	es 100 times
7.	` '	tomato is:	(b)	Decreases		(C)	remain same	(u)	mercus	cs 100 times
7.	(a)	1.2	(b)	4.2		(c)	7.2	(d)	9.2	
8.		K _c value is sma			sition i			_ ` _		L, GRW 08)
O.	(a)	Towards left	(b)		(c)		ns unchanged	(d)	None of	
9.		c buffer solution					is unchanged	(u)	NOTIC O	(GRW 08)
J.	(a)	A strong acid a			, iiiixiiig	(b)	Weak base and	l ite ealt	with stro	
	(c)	9		with weak acid		(d)	Weak acid and			
10.		OH of solution								, GRW 09)
10.	(a)	4.0 moles/dm ³		10 ⁻¹⁰ moles/dm		(c)	0.4 moles/dm ³	(d)		moles/dm ³
11.	` '	oncentrations o						(u)	T × 10	(LHR 09)
11.	(a)	Equal	(b)	Maximum	ucts at t	(c)	Minimum	(d)	Constar	
12.	` '	erm pH was int				(c)		_ ` _		1, 12, 13)
12.	(a)	Henderson	(b)	Sorenson		(c)	Goldstein	(d)	Thomso	
13.	` '	elationship betv			n by:	(C)	Goldstelli	(u)	HIOHISC	(LHR 11)
13.		-	-	$K_c = K_p$ Error!	sii by.	(c)	$K_p = K_c (RT)^{\Delta n}$	(d)	V _ V	(RT) ^{-∆n}
4.4	(a)	$K_c = K_p$	(b)	•		(c)		(u)	$\mathbf{K}_{p} = \mathbf{K}_{c}$	<u> </u>
14.		olubility of KCIC		• • •	sea by	_		(4)	I/Cl	(GRW 11)
15	(a)	NaClO₃	(b)	NaCl		(c)	KMNO ₄	(d)	KCl	(LUD 40)
15.		f mass action v			erg and			(4)	1064	(LHR 10)
1.0	(a)	1909	(b)	1906		(c)	1846	(d)	1864	(CD)4(10)
16.		tion of hydrog	_		presse	-	LICI	(4)	NIII CI	(GRW 10)
47	(a)	KCI	(b)	NaCl		(c)	HCI	(d)	NH ₄ Cl	CDW 40)
17.	-	H of human blo		4.0		(-)	с Г			8, GRW 10)
10	(a)	7.0	(b)	4.0	_	(c)	6.5	(d)	7.4	0.1110.423
18.		nic product of		viii increase it:		OII :			GRW 1	.0, LHR 13)
	(a)	H ⁺ ions are add			(b)		n are added			
	(c)	Temperature is			(d)		OH⁻ ions are ad	ided in e		
19.		HCl is added to		•	•					9, LHR 14)
20	(a)	Increases	(b)	Remains consta	` ,		` '	rst decre	eases tne	n increases
20.		of the following	_	or affects on e	quilibrit					(MTN 08)
	(a)	Change in temp				(b)	Change in cond		n	
	(c)	Change in Press				(d)	Change in volu			
21.		one of the foll	_		in wate					
	(a)	NaCl	(b)	CuSO ₄		(c)	Na_2CO_3	(d)	NH ₄ Cl	(MTN 09)

22		pH of m	ilk is 6.	5, its p	OH wil	ll be:								(1)	/TN 09)
		` '	14		(b)	7.5			(c)	7		(d)		ne of th	iese
23	. 1		t of equ							•				_	4TN 10)
			Mole ⁻¹ dr		(b)	Mole ⁻²			(c)		dm ⁻¹	(d)		ne of th	
24.		Which o	of the fo	ollowing	g react	ions w	ill be fa	avored							
			$N_2 + O_2$						(b)		3H ₂ ∈		H ₃	(1)	1TN 10)
			PCI5 =						(d)	H ₂ +	$I_2 =$	<u>→</u> 2HI		_	
25	-		buffer o			ited by	using:							(1)	4TN 11)
	,	` '	Moseley'	•					(b)		derson's	•	on		
~			De-Brogl			,			(d)		's equa				
26		-	hesis of					ess. The							
27			150-160			170-20	uatm		(c)	200-	300 atn	n (d)	30	0-350 a	
27.			on has A base			•: An acid	ı		(c)	Neut	ral	(4)	No	ne of th	SWP 08)
28.		` '	eaction					catalys	(c)		ıaı	(d)	INC		BWP 08)
20			eaction Fe		(b) (b)	── 2111 Ni	13 tile	catalys	(c)	Pt		(d)	Pd	-	WP US)
29.			ue of ec				an nre	dict	(C)	ΓĽ		(u)	ru		BWP 09)
23			The direct	-			an pre	aict.	(b)	The	extent o	of reacti	on		MI (5)
		` '	The effe						(d)		the dir			ent of re	action
30.			of 10 ⁻³				ous so	lution o					0/100		SWP 10)
			3.0		(b)	2.7			(c)	2.0		(d)	1.5		- /
31.			ion of N			hermic	reaction	on. Lov		erature	favor	s forwa	rd rea	ction. I	However,
	i	in Habe	r's proc	ess ter	nperat	ure use	ed is:		_					(E	SWP 10)
		` '	200°C		(b)	300°C			(c)	400°	C	(d)	50	0°C _	
32	. 1	The uni	t of equ											(E	SWP 11)
						H ₂ =		I₃ ∆H =							
			Having n			Mole di			(c)		+2 dm-6	` ,		ole ⁻² dm	
33.									-	-					SWP 11)
	,	` '	Forward		` '	Backwa			(c)		affected	(d)	All	of thes	
34.			h of the		_	actions	K _c and	I K _P WII	-		21.1	21			OGK 08)
			PCl₅ =						(b)		3H₂ =				
25			2SO ₂ + ((d)		O ₂ =			7	2017 4 20
35.			ICI is pa		_			iution			affected				OGK 10)
36.		` ,	Increase in wate		(b)	Decrea	seu		(c)	INOL 6	anecteu	(d)	INC	ne of a	l l
30.			5.0		(b)	6.0			(c)	6.2		(d)	7.0	1	
37.			of mas				v.		(C)	0.2		(u)	7.0	_	SWL 15)
			D.C Dow			g	.,.		(b)	Gav-	Lussaic	and C N	4 Guldh		
			C.M Gulo			age			(d)		derson a				
	`			- 3		J =			(~)						
							ANS	SWER	KEY						
r			1	•	•	1		ı							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a	d	b	С	b	b	b	a	b	b	d	b	С	d	d
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	d	С	С	a	С	b	d	С	b	С	b	a	d	a
31	32	33	34	35	36	37								
С	d	b	d	b	С	С								

9

SOLUTIONS

1.	Depre	ssion in the fre	ezing po	oint is	directly	propo	rtional t	to:		(LHR 05)
	(a)	Molarity of solut		(b)				Molality of	solvent	(d) None
2.		ty of solution is					(-)	, , , , , ,		(GRW 07)
	(a)	Moles/kg	•	(b)	g.dm ⁻³		(c)	dm³. mole	-1	(d) mole. dm ⁻³
3.		o. of moles of so								(LHR 07)
•	(a)	Molarity		Molalit		0. 0.	(c)	Normality	(d)	Mole fraction
4.		ne – ether can	` '		,		(-)	,	(-)	(LHR 07)
	(a)	Ideal solution	(b)	Non- ic	leal solut	ion	(c)	Buffer solu	ution (d)	None of these
5.	Ìn a m	ixture of 28 gra								(LHR 08)
	(a)	1.1		(b)	0.51		(c)	0.25		<u>(d) 0.</u> 11
6.	Which	salt dissolves i								(GRW 08)
_	<u>(a)</u>	NaCl		(b)	CuSO ₄		Na ₂ CO		(d)	NH ₄ Cl
7.		ımber of moles							<i>(</i> 1)	(GRW 09)
0	(a)	Molality olar of solute di		(b)	Molarity		Mole-fr		(d)	Normality 19, GRW 10)
8.	(a)	0.1 molar		(b)	1.0 mol		0.5 mo		(d)	none of these
9.		t's law is repres		` '	1.0 11101	ai(c)	0.5 1110	iai	(u)	(LHR 09)
Э.	Raouii	•		-			۸D			(LIIK US)
	(a)	$P = P^{o}X_{1}$		(b)	$\Delta P = P^{\alpha}$	$^{0}X_{2}(c)$	$\frac{\Delta I}{D0} = X$.2	(d)	all of these
10.	The ar	nount of NaOH							in arame ici	(CDW 11)
10.	(a)	10	_	(b)	15	(c)	20	i solution		25
11.		aOH dissolved ı						,.	(d)	(LHR 10)
	(a)	0.5 M		(b)	1.0 M		1.5 M	/-	(d)	2.0 M
12.		zeotropic mixt						deviation		
12.		point.	uie oi	Solution	JII SIIOV	villy p	USILIVE	ueviation	can be us	(FSD 07)
	(a)	Maximum		(h)	Minimu	m (c)	No sha	rn	(d)	None of these
13.		dration energy							(u)	(FSD 07)
13.	(a)	Equal to		(b)			:)Greate		(d)	None of these
14.	` '	olal boiling poi					.) Gleate	ı ulalı	(u)	(FSD 08)
17.	(a)	Nature of solver					ıtion (c)	Nature of	colute (d)	pH of solution
15.										eezing is:(FSD 09)
19.	(a)	Phenol		(b)			(c)		(d)	Methanol
16.		is a Colligative		` '	Laryteri	c giycoi	(C)	1(10)	(u)	(FSD 10)
	(a)				solution		(h)	Change in	free energy	
	(c)	Heat of vanouri	zation of	solven	t in the s	olution	(q)	Lowering	of vanour pre	of a solution ssure of a solution
17 .		ncentration of	solute i	in the	solution	when	it is in	eauilibriur	n with the s	solid substance at a
		ular temperatu				wiicii		equilibriui	ii widi die s	(SGD 10)
		Solubility				,	(c)	Molality	(d)	
18.		concentration i			i iolalic,	′	(0)	riolality	(4)	(RWP 08)
10.	(a)	Active mass		(b)	Weight		(c)	Mass	(d)	None of these
19.		ueous solution		` '	_			1 1033	(u)	(RWP 08)
	(a)	Acidic	-	(b)	Basic	(01130)	(c)	Neutral	(d)	Amphoteric
20.		NaOH is dissolv				tion. Th				
	(a)	2.0 M		(b)	1.0 M	11	(c)	0.2	(d)	0.1 M
21.		one of the follo				ution v				
		NaCl		(b)	Na ₂ SO ₄		(c)	NH4Cl	(d)	CH₃COONH4
	(a)	Naci		וטו	11/02/2014		(()	INI 14C-1	((1)	CH3COONH4

22.	In a n	nixture of 7g of N ₂ and	d 8g of (O ₂ the mole fra	action o	of O ₂ is:		(MTN 07)
	(a)	1	(b)	0.2	(c)	0.5	(d)	0.2
23.	Chees	se and butter are the o	example	e of solution of	•			(MTN 08)
	(a)	Liquid in liquid	(b)	Solid in solid	(c)	Liquid in solid	(d)	Solid in liquid
24.	A solu	ition containing 5.3 g	of Na ₂ C	O₃ dissolved p	er dm³	is:		(MTN 09)
	(a)	1.0 M	(b)	0.1M	(c)	0.5 M	(d)	0.05 M
25.	Water	r of crystallization of (CuSO4 is	5 :				(MTN 09)
	(a)	five	(b)	ten	(c)	two	(d)	six
26.	If we	dissolve Na ₂ SO ₄ in wa	ater the	n the solution	is:			(BWP 08)
	(a)	Acidic	(b)	Basic	(c)	Neutral	(d)	All of these
27.	Soluti	on containing relative	ely lowe	r concentratio	ns of so	olutes are calle	:d:	(BWP 09)
	(a)	Dilute solutions			(b)	Concentrated s	solutions	
	(c)	Saturated solutions			(d)	Ideal solutions		
28.	The c	ritical solution tempe		f phenol-wate	r syster	n is:		(DGK 08)
	(a)	35.6°C	(b)	49.5°C	(c)	57.8°C	(d)	65.9°C
29.	Which	one of the following						(DGK 10)
	(a)	C ₂ H ₅ OH and H ₂ O		C ₆ H ₆ and CCl ₄		CHCl ₃ and (CH ₃		(d)H ₂ O and HCl
30.	The m	ass of Glucose requir	ed to pr	epare 1 dm³ o	f 20% (glucose solutio	n is:	(DGK 11)
	(a)	18g	(b)	180g	(c)	36g	(d)	200g

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b	d	a	а	С	С	a	b	d	a	b	b	b	а	b
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
d	а	а	b	d	С	С	С	d	а	С	а	d	b	d

ELECTROCHEMISTRY

1.	Redu	ction always t	takes ni:	ace:					(LHR 05, 12)	
	(a)	At anode	canco pi			(b)	At cathode		(LIIIX 03/ LL)	
	(c)	At both electi	rodes			(d)	does not oc	cur at electr	odes	
2.		electrolyte KO		d in cell:		(-)	4000		(GRW 06)	
	(a)	Lead accumu				(b)	Ni – Cd cell			
	(c)	Alkaline batte				(d)	Silver oxide	batterv		
3.		e reaction 2Fe	•	—→2FeCl₃:		(-)			V 09, LHR 06)	
	(a)	Fe is reduced		,		(b)	Fe is oxidize		,	
	(c)	Cl ₂ is oxidized				(d)	None of the			
4.		ation state of		n in CaH ₂ is:		()		• • •	(GRW 07)	
	(a)	+1	(b)	-1		(c)	+2 (d)	zero	,,	
5.		etal can be pu		electrolytic o	cell by ma			ı as:	(GRW 07)	
	(a)	Anode (b)			de and Cat				nature of solut	ion
6.	Loss	of electrons is		. ,				·	(LHR 07)	
	(a)	Oxidation	(b)	Reduction	(c)	Hydra	tion (d)	Dehydra		
7 .	Fuel	cells convert o	chemical	energy into:		•	. ,	•	(GRW 07)	
	(a)	Heat energy	(b)	Light energy	(c)	Electri	cal energy (d)	Mechanic	al energy	
8.	Elect	rolysis is used	for:						(LHR 08)	
	(a)	Electroplating		Manufacture		n metal	(c) Mar	nufacture of	Al (d) All of	these
9.	Nelso	on's cell and D	own's c	ell are examp	le of:			(FSD	09, GRW 08)	
	(a)	Electrochemic	cal cell	(b) Galv	anic cell	(c)	Electrolytic	cell (d)	None of these	е
10.	The c	oxidation num	ber of C	r in K2Cr2O7 is	3:		(GR	W 09, 10, L	HR 10,12,13)	
	(a)	+14	(b)	+12	(c)	+6	(d)	+13		
11.	The e	electrolyte use	ed in fue	l cell is:				(LHR 09, D	GK, GRW 10)	
	(a)	Aqueous NaC	l (b)	Molten NaCl	(c)	KOH	(d)	NaNO ₃	<u> </u>	
12.	Whic	h one is not a	n electro						(LHR 11)	
	(a)	Aqueous NaC		Aqueous CuS	6O4 (c)	Cu me	etal (d)	H_2SO_4		
13.	Oxida	ation state of	Mn is Mı	nO4 ²⁻ is					(LHR 10)	
	(a)	+4	(b)	+6	(c)	+5	(d)	-6 <u></u>		
14.	In H ₂	O ₂ the oxidati	ion state	of oxygen is	:			(SGD	09, GRW 11)	
	(a)	+1	(b)	-1	(c)	+2	(d)	-2		
15 .	Elect	rode potentia							(GRW 11)	
	(a)	0.00	(b)	1.00	(c)	0.01	(d)	0. <u>50</u>		
16.		ation number		nium in K ₂ Cr ₂ (09, LHR 10)	
	(a)	2	(b)	4	(c)	6	(d)	12		
17 .		of Zn-Cu cell							(LHR 10)	
	(a)	0.0V	(b)	0.5 V	(c)	1.0V	(d)	1.10V		
18.		oxidation num		=		_			(FSD 07)	
	(a)	3	(b)	5	(c)	7	(d)	9		
19.		oxidation pote		• •					(FSD 08)	
	(a)	0.02V	(b)	0.1V	(c)	0.00V	(d)	0.20V		
			_		_					_
20.		nighest reduct	•						lue is:(FSD 1	O)
	(a)	+3.87V	(b)	-3.87V	(c)	+2.87	V (d)	-2.87V		
21.		entage of H ₂ S0							(FSD 11)	
	(a)	40%	(b)	25%	(c)	30%	(d)	50%		

2	22.	Cathod	e in NI	CAD ce	ll is:							(MT	N 09, FS	D 11,L	HR 14)
		` '	Ag₂O		(b)	NiO_2									
		` '	Cd	_	(d)	Zn		_							
2	23.	Accordi				pt, oxi	dation							(Sc	SD 10)
			Addition					(b)		val of h	ydrogen	l			
_		` '	Increase					(d)	All of	above				/6 /	20.44)
4	24.	In Na ₂ (oxidati		_	ygen is		4		(4)	. 1		(SC	(D 11
-	25.	()	-2 traction	of Na-	(b)	+2 by alac	trolycia	(c)	_	l ic car	` ,			(DV	/D 067
4	25.		Down's		(b)	Fuel ce		(c)					عند حواا		VP 08)
7	26.	` '			` '			` ,			` ,			al curr	ant itie
-	-0.	called:	ile illet	ai is a	срозис	u on a	ic suric	ice or t	iic otiic	or by the	c proce	233 01 0			
			Electroly	/sis	(b)	Electro	lvtic ref	inina (c)	Electr	oplating	(d)	Elect			<i>-</i> //
2	27.	` '	,		` '		.,	9 (=)		- - - - - - - - - -	(-)			WP, RW	P 10)
		.	SO_2	•	(b)	SO₃		(c)	H_2S		(d)	H ₂ SC		<i>'</i>	
2	28.	The cel	l in whi	ch elec	ctrical e	energy	is conv	erted i	nto che	is calle	ed:	(MT	N 07)		
		(a) Galvanic cell (b) Electrolytic cell (c) Fuel cell (d)													
2	<u> 2</u> 9.	In rusti	ing of ir	on sho	wn by	the rea	iction 4	lFe + 3	0 ₂>2	2F ₂ O ₃ , I	ron is:			(MT	ΓN 07)
		(a)	Precipita	ated	(b)	Reduce	ed	(c)	Hydro	olyzed	(d)	Oxid	ized		
3	30.						_								
									(b)						tials
3	31.		-	NaCI		-	l, whic			ing get		_	t catho	de:(<u>M</u>	N 08)
_		(~)				-	. : 6	` '	OH		(d)	Cl		6 775	-N. 00)
3	32.			numbe			n in Cr ₂				(4)	. 12		(M	N 08)
-	33.	()		ne ie e	` '	+4		(C)	+0		(u)	+12		(M	ENLOQ)
-	.					Paduct	ion	(c)	Dicco	ciation	(d)	Floci	trolycic	(M	N 09)
7	34.	` '						(c)	D1330	Ciation	(u)	LICC	Li Oiysis	(MI	LN 00)
•	, T.							(c)	Neutr	alization	(d)	e m	f		N OS)
3	35 .	` '									` ,			of: (Mi	N 10)
Ī			-	•						-			-		
3	36 .									3,	()		3,		VP 09)
					(b)		_			ry cell	(d)	None	e of thes	se -	
3	37.	Fuel ce	II conve	erts che	emical (energy	into:	• •		•	` ,			(BV	VP 11)
					(b)								nd energ		
3	88.														SK 08)
										's cell	(d)	All o	f these		
3	39.			e of ca		_	e (C ₆ H					_		(DC	SK 11)
		` '						(c)	Two		(d)	Four	•	-	
4	Ю.			numbe		_	ın HNO		_		/ -J.\			(DC	(K11)
		` '				-3		(C)	-5		(a)	+5		(D (N 44)
4	1.			cing ag		CI-1		(6)	Dr-1		(4)	т-1		(DC	sk II)
/	l2 .	()	=	which			charge				(u)	1		(G:	2W12X
7	72.									rv cells	(d)	Prim	arv cello		(W-1-2-)
4	13.							J (C)	i Ci tib	ii y CCIIS	(u)		ary ceris		R 14)
_				ibei oi			2 131	(c)	+2		(d)	-1		((===	11.515.
		()			(-)	-, -	AVI				(-)	-			
							ANS	2MEK	KEY						
ı	4	1 2	-	A	-	-	-	0		4.0	4.4	42	42	4.4	4-
	1	2			_				H₂S (d) H₂SO₃ into chemical energy is Fuel cell (d) Daniel cell 302→2F₂O₃, Iron is: Hydrolyzed (d) Oxidized ine electrodes in: (MTN 07) (b) Decreasing order of reduction potentials obtained (d) there is not fixed arrangement into following get discharged at cathode: (MTN 08) OH (d) Cl (MTN 09) Heat energy (d) Electrolysis Neutralization (d) e.m.f reaction takes place at the expense of: (MTN 10) Heat energy (d) Solar energy ed: (BWP 09) Tertiary cell (d) None of these Magnetic energy(d) Sound energy extraction of Na metal: Down's cell (d) All of these cells is: (DGK 11) Two (d) Four -5 (d) +5 (DGK 11) Called: (GRW12) Tertiary cells (d) Primary cells (LHR 14) +2 (d) -1						
	b	C	Electrolysis (b) Electrolytic refining (c) Electroplating (d) Electrolytic Thas the highest state in: (BWP, RWP 10) SO2 (b) SO3 (c) H ₂ S (d) H ₂ SO3 (d) H												
	16	17													
	С	d												d	a
	31	32	33	34	35	36	37	38	39	40	41	42	43		

d

d

С

b

а

a

b

b

а

b

С

а

d

11

REACTION KINETICS

1.	_			the reactant mole					
	(a)	Lower will be			(b)	Higher will be			
	(c)			emains unaffected	(d)	The rate may	increase	or decre	ase
2.				rate is independe					
	(a)	Temperature ((b)	Concentration		ants	
	(c)	Concentration			(d)	None of these	!		
3.	The o	order of reaction		$+ NO \longrightarrow NO_2 +$	O ₂ is:				
	(a)	One	(b)	Two	(c)	Three	(d)	Zero	
4.		mposition of n		pentaoxide has o	order of react	ion:			
	(a)	Zero	(b)	First	(c)	Second	(d)	Third	
5.	A sub		retards	the rate of reacti	on is called:				
	(a)	Inhibitor	(b)	Activator	(c)	Oxidant	(d)	Auto-C	atalyst
6.	The n			nergy required fo					
	(a)	Activation ene			energy (c)	Translational	energy	(d)	None
7.		-		eaction HCOOH —					
	(a)	Copper	(b)	Alumina	(c)	Silica	(d)	Iron	
8.	_	-	-	to glucose and fru	ictose in the	-	-		
	(a)	Urease	(b)	Invertase	(c)	Zymase	(d)	None	
9.		-	oceeds	in sequence of ste	•		ermined	l by:	
	(a)	Faster step			(b)	Slowest step			
	(c)	Molecularity o			(d)	Order of differ	rent step		
10.			makes t	the catalyst more	effective is				.HR 10, 11)
	(a)	Inhibitor	(b)	Retarder	(c)	Promoter	(d)	Auto C	,
11.				nt of radioactive e	element disin	tegrates in 6	0 minut	tes the	half life of
	radio	active element	t is:						(LHR 10)
	(a)	20 minutes	(b)	30 minutes	(c)	40 minutes	(d)	25 min	
12.	with	increase of 10	°C temp	perature, the rate	of reaction	becomes dou	ble. This	s increa:	se in rate o
	react	ion is due to:							
	(a)	Decrease in th	ne activa	tion energy of react	ion				
	(b)	Decrease in n	umber of	f collision between t	the molecules				
	(c)	Increase in ac	tivation	energy of reactants	(d)	Increase in nu	ımber of	effective	collision
13.	The u	init of rate con	istant fo	or zero order reac	tion is:				
	(a)	dm³S ⁻¹	(b)	mole dm ⁻³ s ⁻¹	(c)	dm³ mol-1s-1	(d)	mole S	-1
14.	If the	rate equation	of reac	ction 2 A + B \rightarrow Pi	roduct				
	Rate	$= k [A]^2 [B] ar$	nd A is p	present in large ex	xcess, then o	rder of reacti	on is:		
	(a)	1	(b)	2	(c)	3	(d)	None o	of these
15.	The h	alf life period	of 6 Ci	is 5760 years. 100	Omg of samp	le of ¹⁴ C wil	l reduc	e to 25	mg in:
	(a)	11520 years	(b)	2880 years	(c)	57600 years	(d)	5760 y	
16.		energy of activa	` ,	•	(C)	37000 years	(u)	3700 y	Cars
10.	(a)			ants and products	(b)	Less than the	reactant	s and nro	nducts
	(a) (c)	Equal to the p		and products	(d)	Equal to the r		s and pro	Judets
17.				catalyses the fol		Lquai to trie i	cacianis		
1/.		ate the enzym :O6>2C2H5O			iowing:				
	(a)	Diastase	(b)		(c)	Urease	(d)	Inverta	ase

The r	ate of chemica	l react	ion depends upon the	nature	of reactants be	cause	?
(a)	Some of the re	eactants	s have high boiling point	(b)	Some of the re	actants	are colored
(c)	Energy of acti	vation d	liffers from one reaction	to anothe	er		
(d)	Some of the re	eactants	s are solid at room tempe	erature			
	h of following	is an ex	xample of homogenou	ıs cataly	/sis?		
(a)	Formation of			(b)	Formation of S	O ₃ in co	ontact process
(c)	Hydrolysis of	ester		(d)	Formation of N	lH₃ in H	aber process
In ze	ro order reacti	on the	rate is independent of	f:			
(a)	Temperature (of reacti	ion	(b)	Concentration	of prod	ucts
(c)	Concentration	of reac	tants	(d)	None of these		
Hydro	olysis of Tertia	ry buty	l bromide has order o	f reaction	on:		
(a)	First order	(b)	Pseudo first order	(c)	Second order	(d)	Third order
A sub	stance which	decreas	ses the efficiency of a	catalys	t is called:		
(a)	Promoter	(b)	Activator	(c)	Poison	(d)	Auto catalyst
Photo	chemical read	ctions a	are:				
(a)	First order	(b)	Third order	(c)	Second order	(d)	Zero order
The r		ıl react	ion is independent of:				
(a)	Molecularity			(b)	Temperature		
(c)	Nature of read			(d)	Concentration	of reac	tion
			or zero order reaction				
(a)	mol dm ⁻³ s ⁻¹	(b)	mol ⁻¹ dm ³ s ⁻¹	(c)	dm³s ⁻¹	(d)	mol s ⁻¹
			or a reaction by using	-			
(a)	Increased	(b)	Decreased	(c)	Not changed	(d)	Moderate
-			qual to rate of reaction				
(a)	Zero	(b)	Four	(c)	Three	(d)	Unity
	equation $K = A$						
(a)	Rate law	(b)	Rate equation (c)	Arrhei	nius equation (d)) Gene	ral gas equation

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b	b	b	b	a	a	a	b	b	С	b	d	b	a	а
16	17	18	19	20	21	22	23	24	25	26	27	28		
a	b	С	С	С	b	С	d	a	a	b	d	С		