PERIODIC CLASSIFICATION OF ELEMENTS AND PERIODICITY

1.	The number of she	lls in an	element refle	cts its:			
	(a) Period numb	er (b)	Group numb	er (c)	Both	(d)	None
2.	The number of elec	trons in	valence shell	of an el	ement reflects its:		
	(a) Period numb	er (b)	Group numb	er (c)	Both	(d)	None
3.	Generally metals for		les:				
	(a) Acidic	(b)	Basic	(c)	Amphoteric	(d)	None
4.	Variable valency is	shown	by:				
	(a) Group 1A			(b)	Group IIA		
	(c) Group VIIA			(d)	Group IB		
5.	Hydrogen can be p			os of the			
	(a) IA, IVA and '			(b)	VIIA Elements		
	(c) IIIA, IVA and			(d)	IIA, IIIA and VIIA ele	ments	
6.	Members of group		alled:				
	(a) Alkali metals			(b)	Alkaline earth metals		
	(c) Halogens			(d)	Noble gases		
7.	Members of group		alled:				
	(a) Alkali metals			(b)	Alkaline earth metals		
	(c) Halogens			(d)	Coinage metals		
8.	Keeping in view the						
_	(a) Mg>Sr	(b)	Ba > Mg	(c)	Be>Mg	(d)	Ra>Ba
9.	Which one of the fo	_		-			
	(a) MgO	(b)	Na ₂ O	(c)	SO ₂	(d)	ZnO
10.			angement of	elements	s recurrence (periodic	ity) of p	roperties
	take place at every		4 Oth		4 Oth	<i>(</i> 1)	
	(a) 8 th element	(b)	10 th element	` ,	18 th element	(d)	None
11.	Atomic number wa		-	-	404=		
	(a) 1913	(b)	1914	(c)	1915	(d)	1916
12.	Total groups in mo	_	_		40	<i>(</i> 1)	40
	(a) 7	(b)	8	(c)	10	(d)	18
13.	Non-metals usually	exist a	s:	(1.)	6		
	(a) Liquids			(b)	Gases		
	(c) Liquids or ga			(d)	Waxy solids		
14.	The Ionization ene		oaium is:	(1-1)	E12 I/ 1 l-1		
	(a) 500 K.J mol ⁻¹			(b)	513 K.J mol ⁻¹		
4-	(c) 496 K.J mol ⁻¹	L		(d)	480 K.J mol ⁻¹		
15 .	SnCl ₄ is a:	Cl	C	(1-1)	T:-		
	(a) Co-ordinate		Compound	(b)	Ionic compound		
10	(c) Covalent Cor			(d)	None of these		
16.	Ga has oxidation st		. 2	(-)	. 4	(4)	
47	(a) +3	(b)	+2	(c)	+4	(d)	+1
17.	Hydrides can be cla	issitied	mto:	(b)	Throa tunes		
	(a) Two types			(b)	Three types		
10	(c) Four types			(d)	Five types		···
18.					der of increasing ato		
	(a) I>Br> Cl	(b)	Li>Na>K	(c)	He>Ne>Ar	(d)	None

19.	9. The decrease in nuclear force on valence electrons, because of the increase in number of shells containing electrons and layering above is known as:							
		_		ns and layer	_	Shielding effect		
	(a)	Resonance eff			(b)	•		
20	(c)	Inductive effe		t in the Eth	(d)	None		
20.		8			-	periodic table is:	(4)	32
21.	(a)	element has	(b)	10	(c)		(d)	32
21.	(a)	Li	(b)	Na	(c)	K	(d)	Rb
22.		of the followi					(u)	ΝU
22.	(a)	Na and K	ng pans	s are chemi	(b)	Ba and Sr		
	(c)	Zr and Hf			(d)	Ca and Zn		
23.		of the followi	na elen	ents is mo				
25.	(a)	Oxygen	(b)	Chlorine	(c)	Nitrogen	(d)	Fluorine
24.	` '	of the followi	` '			9	(4)	ridornic
	(a)	Mg	(b)	Ca	(c)	Al	(d)	Cs
25.	` '	st Hydration e			` '	, u	(4)	00
	(a)	Na ⁺	(b)	Mg ⁺²	(c)	Al ⁺³	(d)	Ga ⁺³
26.	` '	of the followi	` '	_	` '	ation Energy:	(-)	
	(a)	Na ⁺	(b)	Al+	(c)	Al ⁺²	(d)	AI^{+3}
27.		lence shell el		structure o		ent is ns²np⁵. The		ill belong
		group:				•		_
	(a)	IA .	(b)	IIA	(c)	VA	(d)	VIIA
28.	Which	of the followi		of atomic n		presents IIA elem	ents: `´	
	(a)	3, 11	(b)	3, 12	(c)	4, 20	(d)	3, 20
29.	Among	the following	g eleme	nts the higl	nest value	of electron affinity	is shown	by:
	(a)	F	(b)	Cl	(c)	Br	(d)	I
30.	The fo			n element o	n shared p	air of electron is k		
	(a)	Covalent bond			(b)	Ionization potentia	1	
	(c)	Electron affini			(d)	Electronegativity		
31.		metals in eacl	າ period	have:				
	(a)	Smallest size			(b)	Lowest Ionization I		
	(c)	Highest Ioniza			(d)	Lowest atomic radi	ius	
32.		rrect order of	electro	n affinity a	_			
	(a)	F > Cl > Br			(b)	Br > Cl > F		
	(c)	Cl > F > Br			(d)	F > Br > Cl		
33.				not exnibi	-	odicity" in properti	ies of the e	elements:
	(a)	Ionization ene	J ,		(b)	n/p ratio		
24		Electronegativ		الحمام ماماسات		Atomic radius		
34.	_	eric (Interme				_	(4)	_
25	(a)	Na Shoot poidity i	(b)	K	(c)	Ве	(d)	С
35.	(a)	ghest acidity i Mn ₂ O ₇	(b)	Mn ₂ O ₃	(c)	MnO ₂	(d)	MnO
36.		valent hydrid			(c)	M1102	(u)	MINO
3 0.	(a)	Liquids	es are u	Sually.	(b)	Gases		
	(a) (c)	Volatile Liquid	c or asce	ac .	(d)	Waxy solids		
37.		of the followi						
<i>37</i> .	(a)	Na ⁺	(b)	Mg ²⁺	(c)	O ²⁻	(d)	Cl-
38.		of the followi				-	(u)	Ci
5 0.	(a)	CaO	(b)	CO ₂	(c)	SiO ₂	(d)	Sb ₂ O ₃
39.		elting point is			(0)	5.02	(α)	35203
JJ.	(a)	Be	(b)	Mg	(c)	Ca	(d)	Sr
	(~)		(~)	٠. ٠	(5)		(4)	٥.

40.	Whic	h of the follow						
	(a)					metallic and non-m	etallic prope	rties
	(b)	, ,		ectron donors t				
	(c)	, ,		ectron accepto				
	(d)			ctor of heat an				
41.						e the highest latt	_	
	(a)	Fluorides	(b)	Chlorides	(c)	Bromides	(d)	Iodides
42.						mpletely filled:		
	(a)	4f	(b)	5f	(c)	6f	(d)	All
43.		number of elei			-		(GRW 2	-
	(a)	32	(b)	18	(c)	10	(d)	8
44.		pasis of moder	•	dic law is:			(FSD, BWP, G	GRW 2012)
	(a)	Electron affin	•		(b)	atomic mass		
	(c)	Ionization en		_	(d)	atomic number		
45.		nighest ionizat	tion ene	rgy is posses	-		(GRW	2011)
	(a)	Nitrogen			(b)	Phosphorous		
	(c)	Bismuth			(d)	Antimony		
46.			omic siz	es is much pı		across rows cont	aining elem	ents of:
	(a)	s & p-block			(b)	d-block		
	(c)	f-block			(d)	All		
47. M		correct state						
	(a)			esent in the sa				
	(b)			ent in the same				
	(c)			e present in th				
	(d)			e present in the	e same pe	riod.		
48.		cle the correc						
	(a)			eases down th	•			
	(b)			eases along a				
	(c)			nains the same				
	(d)			ains the same				
49.		otassium supe						
	(a)	-1	(b)	-2	(c)	-1/2	(d)	-4
50.	_					up (IV-A) becaus		
	(a)	Act as strong			(b)	Act as strong red		
	(c)	Possess the p	property	of catenation	(d)	Form neutral oxid	ies	

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
a	b	b	d	а	а	d	b	d	a
11	12	13	14	15	16	17	18	19	20
a	d	С	С	С	а	b	а	b	С
21	22	23	24	25	26	27	28	29	30
а	d	d	d	С	d	d	С	b	d
31	32	33	34	35	36	37	38	39	40
b	С	b	С	а	С	d	d	b	а
41	42	43	44	45	46	47	48	49	50
а	а	b	d	а	а	С	а	С	b

S-BLOCK ELEMENTS

1.	Which of the fo	llowing sulp	hates is not	soluble in	water:		
	(a) Sodium s	sulphate		(b)	Potassium sulphate		
	(c) Zinc sulp	hate		(d)	Barium sulphate		
2.	Chile Salt peter	has the che	mical formu	la:			
	(a) NaNO₃			(b)	KNO ₃		
	(c) Na ₂ B ₄ O ₇			(d)	Na ₂ CO ₃ .H ₂ O		
3.		e following	compounds		solved in water reacts	s with C	O ₂ :
	(a) Calcium		-	(b)	Sodium chloride		
	(c) Calcium	Sulphate		(d)	Calcium hydroxide		
4.	The main produ		ction of pot				
	(a) KOH	(b)	K ₂ O ₂	(c)	KO ₂	(d)	K ₂ O
5.					ess stable to heat and		
	heating, giving						•
	(a) Li	(b)	Ва	(c)	K	(d)	Rb
6.	Which of the fo			` '		(-)	
	(a) BaO ₂	(b)	CO ₂	(c)	PbO ₂	(d)	SiO ₂
7.	· /				e earth metals:	(-)	
	(a) Be	(b)	Mg	(c)	Ra	(d)	Rb
8.	Which does not	` '	-	(-)		(-)	
-	(a) Cs	(b)	Fr	(c)	Na	(d)	Ca
9.	The oxides of b	` ,		(5)		(-)	
-	(a) Acidic	,	-	(b)	Neutral		
	(c) Basic			(d)	Amphoteric		
10.	Nelson's cell is	used to prer	are:	(4)	, ampirocorre		
		nydroxide		(b)	Sodium carbonate		
	(c) Sodium r			(d)	Sodium bicarbonate		
11.	• •		thode during		trolysis of brine:		
	(a) Na	(b)	H ₂	(c)	Cl ₂	(d)	ОН
12.	Which of the fo	` '		` '		(4)	011
	(a) Fr	(b)	Cs	(c)	Ra	(d)	Rb
13.	The chemical fo	` ,		(6)	Nu	(u)	IND
	(a) MgCl ₂	iniaia or i ic	.ges.te	(b)	Mg (ClO ₃) ₂		
	(c) MgCO ₃			(d)	None of these		
14.	Which carbonat	e of alkali n	netals is inso				
	(a) Na ₂ Co ₃	(b)	K ₂ CO ₃	(c)	Li ₂ CO ₃	(d)	Cs ₂ CO ₃
15.	Ga has most co				L12CO3	(u)	C32CO3
13.	(a) +3	(b)	+2	(c)	+4	(d)	+1
16.	Alkali metals fo		12	(c)	17	(u)	11
10.	(a) Ionic cor			(b)	Covalent compounds		
		te covalent co	mnounds	(d)	None of these		
17.	Li ₂ O is:	ite covalent co	nipounus	(u)	None of these		
1/.		ellow solid		(h)	White solid		
				(b)			
10	(c) Greenish Melting point of		m chlorido i	(d)	Pale yellow solid		
18.	• .	•	m cnioriae is 775 °C		750 ℃	(4)	001 nC
10	(a) 600 °C	(b)		(c)		(d)	801 °C
19.	Lime (CaO) is o	-		-		(4)	Marsa
	(a) Ca(OH) ₂	(b)	CaCO₃	(c)	CaHCO ₃	(d)	None

20.		ement necessai	ry for n	ormal "leaf" de	evelopn	nent is:		
	(a)	Phosphorus			(b)	Sulphur		
	(c)	Calcium			(d)	Magnesium		
21.		often used as:						
	(a)	Reducing Agent			(b)	Oxidizing Agent		
	(c)	Dehydrating Ag		_	(d)	Catalytic Agent		
22.		n metal can be						
	(a)	Alcohol	(b)	Kerosene oil	(c)	H ₂ O	(d)	All
23.			_	•		ne strongest base:		
	(a)	LiOH	(b)	NaOH	(c)	KOH	(d)	CsOH
24.		ng soda has the						
	(a)	Na ₂ CO ₃ .7H ₂ O		Na ₂ CO ₃ .10 H ₂ O		$Na_2CO_3.3H_2O$	(d)	Na_2CO_3
25.		halide has the						
	(a)	NaCl	(b)	NaBr	(c)	NaF	(d)	Nal
26.					_	to form Nitride is:		
	(a)	Li	(b)	Na	(c)	K	(d)	Rb
27.		ectronic configu	uration	of metal (M) is	s 1s², 2s	s ² , 3s ¹ . The formula of	its oxid	le would
	be :							
	(a)	MO	(b)	M ₂ O	(c)	M_2O_3	(d)	MO_2
28.	_	eous solution o	of sodiu	m carbonate is	s alkalir	ne because sodium ca	rbonate	is a salt
	of:							
	(a)	Weak acid and			(b)	Strong acid and weak b		
	(c)	Weak acid and	_		(d)	Strong acid and strong	base	
29.		of the followin	_			_		
	(a)	Ra	(b)	Fr	(c)	Rn	(d)	Cs
30.		ite has the com		n				
	(a)	KCl.MgCl ₂ .6H ₂ O			(b)	Na₃AlF ₆		
	(c)	CaCO ₃ .MgCO ₃			(d)	CaCl ₂ .MgCl ₂ .6H ₂ O		
31.	-	salt is:						
	(a)	Magnesium sulp			(b)	Ferrous ammonium sul	phate	
	(c)	Magnesium amı			(d)	Calcium sulphate		
32.		of Paris is a hy	-					
	(a)	BaSO ₄	(b)	CaSO ₄	(c)	MgSO ₄	(d)	ZnSO ₄
33.						ves plaster of Paris:		
	(a)	Borax	(b)	Gypsum	(c)	Alum	(d)	Calomel
34.		ting quick lime						
	(a)	Ca and CO ₂	(b)	CaCO ₃	(c)	Ca+CO	(d)	CaC ₂
35.		bstance not lik	ely to c	ontain CaCO₃ i				
	(a)	Dolomite			(b)	Marble		
	(c)	Gypsum			(d)	Sea shells		
36.		cide of Berylliu	m is:					
	(a)	Acidic			(b)	Basic		
	(c)	Amphoteric			(d)	None of these		
37.		out the ore of p	otassiu	ım:				
	(a)	Dolomite			(b)	Cryolite		
	(c)	Bauxite			(d)	Carnallite		
38.		ite is an ore of	:					
	(a)	Strontium			(b)	Magnesium		
	(c)	Barium	_		(d)	Potassium		
39.		is not an alkal						
	(a)	Francium	(b)	Cesium	(c)	Rubidium	(d)	Radium

40.	Chile salt peter has the chemical formula:											
	(a)	NaNO₃			(b)	KNO₃						
	(c)	Na ₂ Br ₄ O ₇			(d)	Na ₂ CO ₃ .H ₂ O						
41.	The r	milk of magne	sia is us	sed for the treat	ment	of:						
	(a)	Acidity			(b)	Basicity						
	(c)	Rancidity			(d)	Jaundice						
42.	Ceme	ent contains g	ypsum:				(LHR	2012)				
	(a)	3%	(b)	2%	(c)	0.2%	(d)	0.3%				
43.	Dolo	mite is:					(LHR	08,12)				
	(a)	CaCO ₃	(b)	MgCO₃.CaCO₃	(c)	MgCO₃	(d)	Na ₂ CO ₃				
44.	Chen	nical formula d	of Magn	esite is:			(FSD	2009)				
	(a)	$CaMg_3(SiO_3)_4$	(b)	MgCO₃	(c)	MgSO ₄	(d)	$MgCl_2$				
45.	Whic	h one does no	t belon	g to alkaline ear								
		_		_		1 08,15, FSD 09,15, RWP	-					
	(a)	Be	(b)	Ra	(c)	Ba	(d)	Rn				
46.	The s	substance dep	osited a	nt the cathode d	uring	electrolysis of brine in						
			(1.)		()	(FSD 10,14, B		_				
4-	(a)	Na	(b)	H ₂	(c)	Cl ₂	(d)	O ₂				
47.		ore CaSO ₄ .2H ₂	o nas g	enerai name:	(1.)	<u>=</u>	P 14, FS	SD 11,13)				
	(a)	Gypsum			(b)	Dolomite						
	(c)	Calcite			(d)	Epsom salt						
48.		•		etal which forms	-		-	2010)				
	(a)	Beryllium	(b)	Magnesium	(c)	Calcium	(d)	Barium				
49.				soluble in wate			(SGD	2010)				
	(a)	Barium sulph			(b)	Sodium sulphate						
	(c)	Potassium su			(d)	Zinc sulphate						
50.				Down's cell to:	41.5		(SGD	2011)				
	(a)	Decrease solu	-		(b)	Decrease dissociation						
	(c)	Decrease Mel	ltina noir	nt	(d)	Decrease conductivity						

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
d	a	d	С	a	a	d	d	d	a
11	12	13	14	15	16	17	18	19	20
b	С	С	С	а	а	b	d	b	С
21	22	23	24	25	26	27	28	29	30
С	b	d	b	С	а	b	С	b	С
31	32	33	34	35	36	37	38	39	40
а	b	b	d	С	С	d	b	d	а
41	42	43	44	45	46	47	48	49	50
а	b	b	b	d	b	а	d	а	С

GROUP III A AND GROUP IV A ELEMENTS

1.	Gibbsite contain	wate	r molecules:				
	(a) 6	(b)	5	(c)	4	(d)	3
2.	Sindur used by Indi	an wom	en is chemica	ally:			
	(a) PbO	(b)	PbO ₂	(c)	Pb ₃ O ₄	(d)	PbCO ₃
3.	Corundum is:						
	(a) Al_2O_3			(b)	Na₃AIF ₆		
	(c) $Al_2O_3.2H_2O$			(d)	$Al_2O_3.3H_2O$		
4.	Which one of the fo	llowing	is not an ore	of Alum	inum:		
	(a) Corundum	(b)	Bauxite	(c)	Colemanite	(d)	Kaolin
5.	Which one of the fo	llowing	is not a use o	of boric a	acid:		
	(a) Antiseptic			(b)	Glaze		
	(c) Stiffening age	nt for ca	ndle wick	(d)	Lubricant		
6.	Which of the follow	ing reac	tions of Al is	used in	a photo flash:		
	(a) $2 AI + 3 H_2 -$	•2AlH₃		(b)	$4 AI + 3 O_2 \rightarrow 2AI_2O_3$		
	(c) $2 AI + N_2 \rightarrow 2$	AIN		(d)	2 Al + $3Cl_2 \rightarrow 2AICI_3$		
7.	Two elements frequ	ently us	sed for makin	g transi	stors are:		
	(a) C and Si	_		(b)	Ga and In		
	(c) P and As			(d)	Si and Ge		
8.	Which one of the fo	llowing	is not a use o	of red lea	ad, Pb₃O₄:		
	(a) Red Pigment	_		(b)	Flint Glass		
	(c) Ceramic glaze	es.		(d)	Semiconductor		
9.	In the dried up lake	s of Tib	et and Califor	nia 🖳	is found:		
	(a) Boric acid	(b)	Colemanite	(c)	Borax	(d)	All
10.	What is the formula	of Kaol	in (Clay):	. ,			
	(a) $Al_2O_3.SiO_4$			(b)	AI_2O_3		
	(c) Al ₂ O ₃ .2H ₂ O			(d)	Al_2O_3 , $2SiO_2$. $2H_2O$		
11.	Boric acid is formed	when b	orax reacts v				
	(a) NaCl	(b)	NaOH	(c)	HCI	(d)	H_2CO_3
12.	Ethyl borate is form	ed whe	n boric acid is	reacted	d with:		
	(a) Elhyl Choride			(b)	Ethyl Bormide		
	(c) Ethyl Alcohol			(d)	Ethyl Acetate		
13 .	Which of the follow	ing is a	weak acid:		•		
	(a) Na_2SO_4			(b)	HCI		
	(c) Boric Acid			(d)	None of these		
14.	Talc is used in:						
	(a) Talcum powd	ers		(b)	Face powders		
	(c) Making of hou	ise hold	articles	(d)	All		
15 .	The Chemical formu						
	(a) PbO	(b)	Pb ₂ O	(c)	Pb_2O_3	(d)	Pb ₃ O ₄
16.	The Chemical formu			` ,		` ,	
	(a) PbCO ₃	(b)	Pb ₃ O ₄	(c)	2PbCO ₃ .Pb(OH) ₂	(d)	Pb ₂ O ₃
17 .	Which metal is prot					` /	
	(a) Al	(b)	Zn	(c)	Sn	(d)	Pb
18.	Inert pair effect pla					` ,	
	(a) F	(b)	Al	(c)	Si	(d)	Pb
		. ,		. ,		. ,	

19.	Alum i	is not used:						
	(a)	To jam Radar			(b)	To insulate bu	uildings	
	(c)	Construction of	ships		(d)	Making milk s		
20.		adly corroded l			(-)	. 3	.	
	(a)	Pure water	•		(b)	Salt solutions		
	(c)	Dil.H ₂ SO ₄			(d)	Dil.HNO₃		
21.		s an example o	f:		(4)	2		
	(a)	Ionic hydride			(b)	Molecular add	lition compound	
	(c)	Good oxidizing	agent		(d)	None	iicion compound	
22.		nium reacts wit		stic soda t		Hone		
	(a)	Aluminium hyd		otic boud t	(b)	Aluminium ox	ide	
	(c)	Sodium alumin		drovide	(d)	None	ide	
23.		ounds of Boron						
2 3.	(a)	Electron donati		ve as Lewi	(b)		iency of Boron	
	(a) (c)	Non-metallic na		f Poron	(d)	Small size of I		
14	` '					Siliali Size Oi i	DOIOII	
24.		ts as acid acco	raing t	to the cond	-	Dropotod Love		
	(a)	Lewis			(b)	Bronsted-Low	ту	
2-	(c)	Arrhenius	•		(d)	None		
25.		on-polar oxide		60	()	60	/ IN	A 11
	(a)	H ₂ O	(b)	CO ₂	(c)	CO	(d)	All
26.		emiconductor n		_	_	51.0	<i>(</i> D	
_	(a) _	Si	(b)	Ge	(c)	PbS	(d)	All
7.		rax bead test, v	when I	borax is he			forms bead of:	
	(a)	Black colour			(b)	Blue colour		
	(c)	Red colour			(d)	Green colour		
28.		ical composition	n of C	olemanite			14, GRW 06, BW	P 12)
	(a)	$Ca_2B_6O_{11}.5H_2O$			(b)	$CaB_4H_7.4H_2O$		
	(c)	$CaNaB_5O_9.8H_2O_9$			(d)	$Na_2B_4O_7.4H_2O$		
€.	Basic	lead chromate	is for	med when	lead chrom	ate is boiled w	ith:	
	(a)	Dilute alkali hy	droxide	!	(b)	Dilute acid		
	(c)	Strong alkali hy	/droxid	e	(d)	Strong acid		
30.	Which	n of the followi	ng is u	ised in ma	king fire pro	oof clothes?	(LHR 2	2011)
	(a)	Water glass			(b)	Borax glass		
	(c)	Kaolin			(d)	Asbestos		
1.	Ortho	boric acid whe	n heat	ed to red	hot gives:		(GRW 2	2011)
	(a)	Boric anhydride	2		(b)	Pyroboric acid	Ī	-
	(c)	Metaboric acid			(d)	Tetraboric aci	d	
32.		Te and Po are	called	:	. ,		(FSD 2	2009)
	(a)	Coinage metals			(b)	Alkali metals	•	•
	(c)	Chalcogens			(d)	Halogens		
33.		inum oxide is:			` ,	•	, LHR 14,15, FSD	09.13)
	(a)	Acidic oxide			(b)	Basic oxide	,,,	
	(c)	Amphoteric oxi	de		(d)	None of these	1	
34.		acid reacts wit		stic soda to		None of these	(FSD 2	2010)
<i>,</i>	(a)	NaBO ₂	(b)	NaH ₂ BO ₃	-	Na ₂ B ₄ O ₇	(d)	Na₃BO₃
35 .		ary glass is:	(D)	1 10 1 12DO3	(C)	Na2D4O/	(G) (FSD 2	
)J.		Potassium silica	nto		(h)	Calcium silicat		2011)
	(a)				(b)		ce Sodium silicate	
26	(c)	Sodium silicate			(d)			
36.		ompound which	n torm	is the beac			(LHR 08, SGI) U9)
	(a)	Metal oxide			(b)	Metal boride		
	(c)	Metal borate			(d)	Metal metabo	rate	

37.	The i	(SGD 2010)							
	(a)	Cu	(b)	Cr	(c)	Ni		(d)	Al
38.	The a	aqueous soluti	on of bo	orax is:			(SWI	L 15, SG	iD 11)
	(a)	Acidic			(b)	Neutral			
	(c)	Basic			(d)	Corrosive			
39.	Whic	ch one is more	stable?					(RWP 2	2008)
	(a)	H ₃ BO ₃	(b)	HBO ₂	(c)	$H_2B_2O_2$		(d)	$H_6B_3O_9$
40.	Nitri	c acid can be t	ranspor	ted in a cont	ainer ma	de up of:		(RWI	P-09)
	(a)	Al			(b)	Zn			
	(c)	Cu			(d)	none of these			
41.	Vale	nce shell electi	onic co	nfiguration o	of the ele	ments of group I	IIA is:	(RW	P 2011)
	(a)	ns¹,np²	(b)	ns²,np³	(c)	ns ⁰ ,np ³		(d)	ns²,np¹
42.	The o	chief ore of alu	minum	is:					
	(a)	$NaAlF_3$			(b)	$Al_2O_3.2H_2O$			
	(c)	Al_2O_3			(d)	$Al_2O_3.H_2O$			
43.	The o	onlynonmetalin g	roup II	IA is:					
	(a)	Ar	(b)	Ga	(c)	В		(d)	In
44.	C+Sı	nO₂ —→ Sn	+ CO ₂ : 3	In this reacti	ion carboi	n acts as a:			
	(a)	Reducing age	nt		(b)	Oxidizing agent			
	(c)	Dehydrating a	agent		(d)	none of these			
45.	The o	chemical formu	ıla of cl	ay is:					
	(a)	$Al_2O_3SiF_4$			(b)	Na ₃ AlF ₆			
	(c)	Al_2O_3			(d)	$Al_2O_3.2SiO_2.2H_2O_3$)		
46.		ch naturally occ			SiO ₂ ?				
	(a)	Haematite	(b)	Lime	(c)	Cryolite		(d)	Quartz
47.	The I	highly rigid und	der coo	led liquid sili	ca is calle	ed:			
	(a)	Silicone			(b)	Quartz			
	(c)	Water glass			(d)	Vitreous silica			
48.	Whic	ch one of the g	iven is a	amphoteric i	n nature?				
	(a)	MgO	(b)	Na₂O	(c)	SO ₂		(d)	ZnO
49.	Whe	n H₃BO₃ reacts	with N	aOH, the sal	t mostly f	ormed is?		(DGK	2009)
	(a)	Na_3BO_3	(b)	$Na_2B_4O_7$	(c)	NaH ₂ BO ₃		(d)	NaBO ₂
50.	Whic	ch element for	ns and	ion with cha	rge +3?				
	(a)	Carbon			(b)	Silicone			
	(c)	Aluminum			(d)	Bervllium			

1.	2.	3.	4.	5.	6.	7.	8.	9.	10
d	С	а	С	d	С	d	d	С	d
11	12	13	14	15	16	17	18	19	20
С	С	С	d	b	С	а	d	С	b
21	22	23	24	25	26	27	28	29	30
b	С	b	а	b	d	b	a	С	d
31	32	33	34	35	36	37	38	39	40
а	С	С	С	d	d	d	С	а	a
41	42	43	44	45	46	47	48	49	50
d	b	С	а	d	d	d	d	b	С

GROUP V A AND IV A ELEMENTS

1.	The %	by volume of N	l ₂ in air	· is:					
	(a)	98	(b)	88	(c)	78		(d)	68
2.	Which	one of the follo	wing is	s an amphoteri	ic oxide):			
	(a)	SO ₂	(b)	SO₃	(c)	CO ₂		(d)	AI_2O_3
3.	In Pyri	te burner, the g		duced is:					
	(a)	SO ₃	(b)	SO ₂	(c)	CO ₂		(d)	NO
4.		ch substance ni	_	-					
_	(a)	Urea	(b)	Protein	(c)	Salt peter		(d)	Galena
5.		ion of NO in air	-				<i>(</i> 1)		
_	(a)	N ₂ O	(b)	N ₂ O ₃	(c)	NO ₂	(d)	NO	>
6.		of the following	_	correct about	_			(LHR 2	008)
	(a)	It means light b			(b)	Does not exist		ature	
_	(c)	Bone ash is its r			(d)	has no allotropi	ic forms	<i></i>	>
7.		ılar formula of	_			D		(LHR 2	
0	(a)	P ₄ S the apositio ar	(b)	P fusosia	(c)	P ₃		(d)	P ₂
8.		C the specific gr 1.891	_	2.101	(c)	1.834		(LHR 2	1.740
9.	(a) Which	of the following	(b)		(c)	1.034		(d)	1./40
9.	(a)	Bi	(b)	Sb	(c)	As		(d)	Р
10.		hydride of nitri			(C)	AS		(u)	Г
10.	(a)	N ₂ O ₄	(b)	N ₂ O ₃	(c)	N ₂ O ₅		(d)	NO
11.		s acid is a:	(5)	14203	(0)	11203		(u)	110
	(a)	Reducing agent	(b)	Oxidizing agent	(c)	Both a and b		(d)	None of
	these		(-)		(-)			(-)	
12.	Which	of the following	g is a w	hite hygrosco	pic pow	der:			
	(a)	P ₂ O ₃	(b)	P ₂ O ₅	(c)	P_2O_2		(d)	P_2O_4
13.		Regia is:	` ,		()			` ,	
	(a) ⁻	3 volumes of HC	Cl+ 1Vol	ume of HNO ₂	(b)	3 Volumes of H	Cl+ 1Vo	lume of	HNO₃
	(c)	3 volumes of HN	NO₃+ 1V	olume of HCl	(d)	3 Volumes of H	Cl+ 1Vo	lume of	H_2SO_4
14.	Which	one of the follo	wing e	lements occur	free in	nature:			
	(a)	N	(b)	P	(c)	As		(d)	Sb
15.	Red ph	osphorous can				-			
	(a)			atalyst in vacuun	n at 250	∘C			
	(b)	Distilling it in an		•					
	(c)	Dissolving it in (,					
	(d)			he liquid into wa	ter				
16.	-	norus pentoxide		d as:	(1.)				
	(a)	A cleansing age			(b)	A reducing age			
17	(c)	A bleaching age		hamia i	(d)	A dehydrating a	agent		
17.		ructure of white	e pnosp	onorus is:	(h)	Duramidal			
	(a)	Square planar			(d)	Pyramidal			
10	(c)	Tetrahedral	a nhos:	shorus is most	(d)	Trigonal planer			
18.		of the following		JIOTUS IS MOST			ruc		
	(a)	Red phosphorus Scarlet phospho			(b) (d)	White phosphore Violet phosphore			
	(c)	Scarier briospilo	านอ		(u)	AIOIEL HIJOSHIJOI	ous		

19.	Ortho	phosphoric ac	id is:						
	(a)	Monobasic			(b)	Dibasic			
	(c)	Tribasic			(d)	Tetrabasic			
20.	HNO ₂	acts as an/a:							
	(a)	Acid			(b)	Oxidizing agent	t		
	(c)	Reducing age			(d)	All the three			
21.		s heated with		get:					
	(a)	Hypophospho			(b)	Phosphorous a			
	(c)	Hypophospho	ric acid		(d)	Orthophosphor	ic acid		
22.		e is not:							
	(a)	An allotrope			(b)	A powerful oxid		jent	
	(c)	Paramagnetic	species		(d)	A bent molecul	е		
23.	Oleun		41.5					<i>(</i> 1)	
	(a)	H ₂ SO ₃	(b)	H ₂ SO ₄	(c)	H ₂ S ₂ O ₇		(d)	None
24.		-		in water to ge	_				
	(a)			go to completion		The reaction is			
25	(c)	The reaction i	- ,		(d)	SO₃ is insoluble	in wate	er	
25.	_	-		onegative elen		٨٥		(4)	Ch
26	(a)	N bar is:	(b)	Р	(c)	As		(d)	Sb
26.			(h)	ZnS	(6)	PbS		(4)	EoC-
27.	(a)	HgS	(b)	्राड nic minerals are	(c)		in oartl	(d)	FeS ₂
4 /.	ille e	(LHR 2011)	: iiioi yai	iic iiiiiici ais ai c	s not m	ucii abuilualit	III Cai ti	ı Cı ust.	
	(a)	Li	(b)	N	(c)	Na		(d)	0
28.	` '	dissolves in ac			(-)		(BWP	09, FSD	
	(a)	AuCl ₃	,		(b)	AuI_3	(.,	,
	(c)	AuI_2			(d)	$Au_2(SO_4)_3$			
29.		nic oxides are	removed	during manuf			ssing tl	hrough	•
		(SGD 2010)		_					
	(a)	Ferric hydroxi			(b)	Sodium hydrox			
	(c)	Calcium hydro			(d)	Potassium hydi	roxide		
30.		compound N ₂ O						(RWP	-
	(a)	Cancer	(b)	Sleeping sickne		Hysterical laug	hter	(d)	Tumor
31.				water because				(MTN	2008)
	(a)	it decompose			(b)	it hydrolyses th			
	(c)	acid decompo		r	(d)	acid forms hyd	rate with		
32.		ic number of 1		60		6 -		(MTN	
	(a)			60	` '	65		(d)	
33.		acia, Sulphur	ic acia a	nd Caustic sod	a can b	e transported	ın a con		_
	of:	A I	/ I- \	C	(-)	7:	(-1)	(MTN	-
24	(a)	Aluminum	(b)	Copper	(c)	Zinc	(d)	Teflon	
34.		n of the follow 2009,10)	ring eien	nents does not	Snow t	ne pnenomena	i or allo	сгору	
	(a)	As	(b)	N	(c)	Sb	(d)	all of t	hese
35.			` '	educes Conc. H	` '	30	(u)	(MTN	
55.	(a)	N ₂ O	(b)	NO	(c)	NO ₂		(d)	N ₂ O ₅
36.				conc. H ₂ SO ₄ th			k due t		14205
.		13, BWP 08)	cou micii	COIICI 112504 CI	ic sagai	becomes blue	, auc t	.0.	
	(a)	Oxidation			(b)	Reduction			
	(c)	Dehydration			(d)	Combustion			
37.			n manufa	acturing of H₂S	` ,		s is:		
		•		_	-	DGK,	BWP 10	, GRW 1	.2)
	(a)	V_2O_5	(b)	Fe ₂ O ₃	(c)	Ni		(d)	Pt

38.	The g	given elemei	nt gives N	O gas with dil	HNO ₃ :		(BWP 2011)	
	(a)	Zn	(b)	Cu	(c)	Mg	(d)	Sn
39.	Whic	h of the follo	owing sta	tement is inco	rrect?		(DGK 2009)	
	(a)	H ₂ SO ₄ acts	as a strong	g oxidizing agen	t (b)	H ₂ SO ₄ acts as	a dehydrating a	gent
	(c)	H ₂ SO ₄ acts	as a strong	g reducing agen	t (d)	H ₂ SO ₄ acts as	a sulphonating a	agent
40.	Bone	ash contain	ıs:				(DGK 2009)	
	(a)	80% P			(b)	90% P		
	(c)	80% Ca ₃ (P	O4)2		(d)	90% Ca ₃ (PO ₄)2	
41.	NO ₂ i	is called:					(DGK 2011)	
	(a)	Nitrogen pe	eroxide		(b)	Nitrous oxide		
	(c)	Nitric oxide	!		(d)	Nitric anhydri	de	
42.	Whic	h of the follo	owing me	tal reacts with	ı HNO₃:		(BWP 2012)	
	(a)	Titanium			(b)	Iridium		
	(c)	Platinum			(d)	Magnesiu		
43.	Orth	o-phosphori	c acid has	melting point	::		(LHR 2012)	
	(a)	49℃	(b)	45℃	(c)	41℃	(d)	50℃
44.	Whic	h of the follo	owing gas	is evolved wh	nen copp	er reacts with	n dil. HNO₃?	
	(RWF	2009)						
	(a)	N_2O			(b)	NO		
	(c)	NO_2			(d)	none of these	9	
45.	Whic		owing giv	es brown ring	with FeS	6O ₄ ?	(LHR	2014)
	(a)	NO_2	(b)	NO	(c)	N_2O_3	(d)	NO ₃
46.	Whic	h metal is re	endered p	assive by HNO	₃ ?		(SGD	2014)
	(a)	Pt	(b)	Co	(c)	Sn	(d)	Mn
47.	Whic	h of the follo	owing sho	ws phosphore	escence?		(LHR	2008)
	(a)	Yellow pho	sphorous		(b)	white phosph	orous	
	(c)	black phosi	ohorous		(d)	red phosphor	ous	

1.	2.	3.	4.	5.	6.	7.	8.	9.	10
С	d	b	d	С	d	a	С	a	С
11	12	13	14	15	16	17	18	19	20
С	b	b	а	а	d	С	b	С	d
21	22	23	24	25	26	27	28	29	30
d	d	С	С	а	а	b	а	а	С
31	32	33	34	35	36	37	38	39	40
d	a	а	b	С	С	a	b	С	Ç
41	42	43	44	45	46	47			
h	Ь	_	h	h	h	h			

THE HALOGENS AND THE NOBLE GAES

1.	_	en acid in gas	eous sta	te found as equ	uilibriun	n mixture of monome	ers and I	hexamers
	is:							
	(a)	HF	(b)	HCl	(c)	HBr	(d)	HI
2.	Color of			ot correctly rel	ated:			
	(a)	F ₂ Colorless g			(b)	Cl ₂ greenish yellow ga	as	
	(c)	Br ₂ Reddish b	orown liqu	uid	(d)	I2 grayish black solid		
3.	Mark t	he element,	which ca	an displace thre	ee halog	ens from their comp	ounds:	
	(a)	F_2	(b)	Cl ₂	(c)	Br ₂	(d)	I_2
4.		emical formu		dic acid is:	. ,		` ,	
	(a)	HI	(b)	HIO	(c)	HIO ₂	(d)	HIO ₃
5.		ost inert elen		noble gas group			()	
	(a)	He	(b)	Ne	(c)	Ar	(d)	Kr
6.				idation state o			(-)	
	(a)	XeOF ₂	(b)	XeOF ₄	(c)	XeO ₃	(d)	XeF ₆
7.				noval of alpha			(4)	7.01 0
•	(a)	Radium		iovai oi aipiia į	(b)	Rhenium		
	(c)	Rhodium			(d)	Rutherfordium		
8.			wina a	sece is used i		therapy for cance	r troatr	mont and
0.		uake predict		ases is useu i	iii iaulo	therapy for cance	ı ueau	ilelit allt
	(a)	Ar		Ne	(c)	Xe	(d)	Rn
0			(b)		(c)			
9.) reacts with w			W U8, BV	VP 09)
	(a)	hypochlorous	acid		(b)	perchloric acid		
4.0	(c)	chloric acid	a.		(d)	chlorine and oxygen		
10.		hydride of H		CI O		CIO	<i>(</i> 1)	CIO
	(a)	Cl ₂ O ₇	(b)	Cl_2O_5	(c)	CIO ₃	(d)	ClO ₂
11.		bromide is us					-	2010)
	(a)	Paints	(b)	Photography	(c)	Ceramics	(d)	
	Gasolir							
12.			_	is used for etc	_	_		
	(a)	HF	(b)	HCl	(c)	HBr	(d)	HI
13.	Oxidat	ion state of o	chlorine	in HClO₄ is:				
	(a)	-7	(b)	+7	(c)	-1	(d)	+1
14.	Which	is used for m	naking u	nshrinkable wo	ool:			
	(a)	HBr	(b)	\mathbf{I}_2	(c)	Bleaching powder	(d)	HCI
15 .		is used	for eart	hquake predict	tion			
	(a)	Rn	(b)	Kr	(c)	Xe	(d)	Ar
16.	` '	of the follow	` ,	pound is Carna	` '		` ,	
		KCl. Mg (OH)			(b)	KOH. MgCl ₂ 6H ₂ O		
	(c)	KOH. Mg(OH			(d)	KCl. MgCl ₂ .6H ₂ O		
17 .		ne dioxide is			(-)			
	(a)	Red gas			(b)	Pale yellow gas		
	(c)	Orange gas			(d)	Green gas		
18.		pentoxide a	cte se s		(u)	GICCII gas		
10.	(a)			•	(h)	Ovidizina Agont		
		Reducing Age			(b)	Oxidizing Agent None of these		
10	(c)	Dehydrating		wahlaria said !-	(d)	NOTIC OF LITESE		
19.				erchloric acid is		LICIO	/ -J\	LICIO
	(a)	HCIO	(b)	HClO ₃	(c)	HCIO ₄	(d)	HClO ₂

20.	The ox	cidation stat	es of Xe i	n its compoi	unds rang	e from:			
	(a)	+2 to +8			(b)	+3 to -	+5		
	(c)	+11 to +8			(d)	+3 to -	+7		
21.	The co	mpounds of	f Xe are:						
	(a)	Saturated			(b)	Unsatu	rated		
	(c)	Stable			(d)	Unstab	le		
22.		of the follo	wina is us	ed to fill flu					
	(a)	Krypton	(b)	Argon	(c)	Xenon		(d)	Neon
23.	` '	is the stron		-	(-)	7.0		(-)	
	(a)	HI	(b)	- HCl	(c)	HBr		(d)	HF
24.				gens does n				(4)	• • •
27.	(a)	Fluorine	(b)	Chlorine	(c)	Bromin		(d)	Iodine
25.	` '		` ,	ng is the sma			C	(u)	Touric
23.	(a)	F	(b)	Cl		Br		(d)	I
26.					(c)		ne absence of	(u)	1
20.			_					(4)	None
27	(a)	d-orbital	(b)	s-orbital	(c)	p-orbit	aı	(d)	None
27.			_	greatest red				(-1)	1.17
	(a)	HI	(b)	HBr • •	(c)	HCl		(d)	HI •
28.			_				state in its co	. -	
	(a)	. F	(b)	Cl	(c)	Br		(d)	I
29.		halogen is		•					
	(a)	F	(b)	Cl	(c)	Br	_	(d)	I
30.			_		it than c	hlorine	in aqueous so	olution	. This is
		ited to man		except:					
	(a)	Heat of diss			(b)		n affinity		
	(c)	Ionization p			(d)		f hydration		
31.		ning powder	reacts w	ith a few dro	-	c. HCl to			
	(a)	Chlorine	(b)	Hypochloro		(c)	Calcium oxide	(d)	Oxygen
32.	The bl		ion of chlo	orine is due t	to:				
	(a)	Reduction			(b)	Hydrog	enation		
	(c)	Chlorination			(d)	Oxidati			
33.	Eleme	nts of which	of the fo	llowing grou	ıps will fo	rm anio	ns most readily	/:	
	(a)	Oxygen fam	nily		(b)	Nitroge	en family		
	(c)	Halogens			(d)	Alkali n	netals		
34.	The ha	alogen that i	is most ea	sily reduced	l:				
	(a)	F_2	(b)	Cl_2	(c)	Br_2		(d)	I_2
35.	Which	of the follo	wing is m	ost volatile:					
	(a)	HI	(b)	HBr	(c)	HCl		(d)	HF
36.							potassium dic		
	(a)	Chromic chl			(b)		yl chloride		•
	(c)	Chromous o			(d)		f these		
37.	` '			onoatomic g					
	(a)	Oxygen	.		(b)	Neon			
	(c)	Fluorine			(d)	Nitroge	n		
38.			wina fluo	rides of xend					
J U .	(a)	XeF ₂	(b)	XeF₃	(c)	XeF ₄		(d)	XeF ₆
39.	` '		` ,	xidation stat		ACI 4		(u)	ACI 0
JJ.		Kr		Be	(c)	Al		(d)	Ma
40.	(a) Which		(b) wing pobl	le gas is not			shorou	(d)	Na
₩.				Ne			Jilei e.	(d)	Dn
41	(a)	He	(b)		(c)	Ar Sun and	than on the	(d)	Rn
41.	(a)	_					then on the ea		Holiu
	(4)	Argon	(b)	Xenon	(c)	Neon		(d)	Helium

42.	The la	ast member	of the fan	nily of inert	gases is:			
	(a)	Argon	(b)	Radon	(c)	Xenon	(d)	Neon
43.	XeF ₆	on partial hy	drolysis p	roduces:				
	(a)	XeF_2	(b)	$XeOF_2$	(c)	XeOF ₄	(d)	XeO₃
44.	Whic	h of the follo	wing nob	le gases doe	s not have	e an octet of el	ectrons in its	outermost
	shell:							
(a) 43. XeF (a) 44. Whi shei (a) 45. The (a) (b) (c) (d) 47. Wh (LH (a) (c) 48. Goi 49. Wh	(a)	Neon	(b)	Radon	(c)	Argon	(d)	Helium
45 .	The v	alue of ioniz	ation pot	ential for ine	ert gases i	s:		
	(a)	Zero	(b)	Low	(c)	High	(d)	
	Negat	tive						
46.	The le	owest boiling	g point of	helium is du	e to:			
	(a)	Inertness						
	(b)	Gaseous na	ature					
	(c)	High polari	zability					
	(d)	Weak Van-	der Waal's	forces betwee	en atoms			
47.	Whic	h of the follo	owing sta	tement is co	rrect?			
	(LHR	2014)						
	` ,		• •	ess than Cl ₂	(b)	• ,	of F_2 is less than	
(a) (a) 43. Xel (a) 44. Wh she (a) 45. The (a) (b) (c) (d) 47. (LI (a) (c) 48. Go (a) 49. Wi 50. Th				less than F2	(d)	Bond energy of	of Cl ₂ is less tha	n Br ₂
48.	Goite			e deficiency of				
	` ,	Flourine	(b)	Bromine	(c)	Chlorine	(d)	Iodine
49.	Whic	h hydrogen	halide is t	the weakest	acid in so			
						•	, LHR 13, GRW	
		HF	(b)	HBr	(c)	HI	(d)	HCl
50.		-		es burn to sl		-		LHR 2011)
	(a)	F ₂	(b)	Cl_2	(c)	Br ₂	(d)	Acid

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
a	a	a	d	a	a	a	d	b	a
11	12	13	14	15	16	17	18	19	20
·b	a	b	С	а	d	b	,	С	a
21	22	23	24	25	26	27	28	29	30
С	b	а	а	а	а	d	а	d	С
31	32	33	34	35	36	37	38	39	40
a	d	С	а	d	b	b	b	a	a
41	42	43	44	45	46	47	48	49	50
d	b	С	d	С	d	а	d	а	С

TRANSITION ELEMENTS

1.	Coord (GRW	lination numbe 2010)	r of Fe	in [Fe(CN) ₆] ⁻⁴ i	on is:			
	(a)	4	(b)	2	(c)	6	(d)	-4
2.		o(NH ₃) ₆] ⁺³ the o		_			(4)	•
	(a)	Zero	(b)	Two	(c)	Four	(d)	Six
3.						structure of [Cu(NH		O.A.
•	(a)	Square planar		Tetrahedral	(c)	Octahedral	(d)	Linear
4.						tion state of chromiu		
	(a)	K ₄ CrO ₄	(b)	K ₂ Cr ₂ O ₄	(c)	Cr ₂ O ₆	(d)	CrCl₃
5.		dic medium, po					(4)	C i C i J
•	(a)	Oxidizing agen		Reducing ager		An Acid	(d)	A base
6.	` ,	stitial compoun			(0)	71171010	(4)	71 5450
٠.	(a)	Fe	(b)	Ni	(c)	Co	(d)	All
7.	` ,	n element is alw					(4)	, ui
	(a)	Aluminium	(b)	Copper	(c)	Carbon	(d)	Nickle
8.						highest oxidation st		11101110
•	(a)	Mn	(b)	Cr	(c)	Cr	(d)	Zn
9.						ot vary with a regula		
•	(LHR					ot tur, triur a rogur	partie	
	(a)	Binding energy	,		(b)	Covalent radius		
	(c)	Melting point			(d)	Cationic radius		
10.	` '	• .	nber of	f transition ele		n [Co(NO2)3(NH3)3]	is:	
	(a)	3	(b)	4	(c)	6	(d)	0
11.		IB of transitio		ents contains:	()		()	
	(a)	Zn, Cd, Hg			(b)	Cu, Au, Ag		
	(c)	Fe, Ru, Os			(d)	Cr, Mo, w		
12.	` '		ling en	ergy of transi	` ,	ements depends upo	n: (LHR	13, GRW
		SGD 11)	•	<i>.</i>			•	•
	(a)	Number of elec	tron pa	irs	(b)	Number of unpaired	electrons	
	(c)	Number of Neu	ıtrons		(d)	Number of protons		
13.	First t	ransition series	starts	with:				
	(a)	Υ	(b)	Sc	(c)	Zn	(d)	Cd
14.	Group	IIB of transition	on elen	nents contains	•			
	(a)	Zn, Cd, Hg			(b)	Cu,Au, Ag		
	(c)	Fe, Ru, Os			(d)	Cr, Mo, W		
15 .	The sl	hape of ions co	ntainin	g dsp³ hybridiz	ation is	s:		
	(a)	Tetrahedral			(b)	Trigonal bipyramidal		
	` '	Octahedral			(d)	Square planar		
16 .	Coord	lination numbe	r of iro i	n in K₃ [Fe(CN)	6] is:			
	(a)	6	(b)	4	(c)	1	(d)	2
17 .	The pa	aramagnetic be		is the stronge	st for		-	
	(a)	Fe and Mn			(b)	Fe ³⁺ and Mn ²⁺		
	(c)	Fe ²⁺ and Mn ³⁺			(d)	Fe ²⁺ and Mn ²⁺		
18 .	The o	re of iron:			-			
	(a)	Fe ₃ O ₄	(b)	Fe ₂ O ₂	(c)	FeO	(d)	Fe(OH) ₂
19.	The C	hemical formul	a of Sla	ag is:	-		-	•
	(a)	MnSiO	(b)	MnSiO ₂	(c)	MnSiO₃	(d)	Mn ₂ SiO ₂

20.	Chrom	ates are salts o	of:					
	(a)	HCrO₃	(b)	H ₂ CrO ₄	(c)	HCr ₂ O ₇	(d)	H_2CrO_6
21.	The co	lor of all the ch	romate	es is:				
	(a)	White	(b)	Red	(c)	Blue	(d)	Yellow
22.	Which	of the followin	g can a	Iso be prepare	d by St	adeler's process:		
	(a)	H_2SO_4	(b)	K_2SO_4	(c)	KMnO ₄	(d)	H ₂ S
23.		m carbon steel	is used	in making:				
	(a)	Castings			(b)	Hammer		
	(c)	Tubes			(d)	All of above		
24.	Which	of following is	a very	powerful oxida	ant :			
	(a)	Sulphates			(b)	Dichromates		
	(c)	Nitrates			(d)	Chromates		
25.			ing tra	nsition metal	ions w	rill have definite valu	ie of n	nagnetic
	mome							- 2.
	(a)	Sc ³⁺	(b)	Ti ³⁺	(c)	Cu ⁺	(d)	Zn ²⁺
26.						ne oxidation states:		
	(a)	Na	(b)	Mg	(c)	Fe	(d)	Al
27.	_	uilibrium Cr ₂ O		CrO ₄ 2- is shifte	_			
	(a)	An acidic mediu			(b)	A basic medium		
	(c)	A neutral mediu			(d)	It does not exist		
28.		ner converter i	s used 1	in the manufac				
	(a)	Pig iron			(b)	Steel		
20	(c)	Wrought iron			(d)	Cast iron		
29.		mber of unpair			_	-	(-1)	_
20	(a)	1 :	(b)	2	(c)	4	(d)	5
30.		ion of iron can	be prev	rented by coat				
	(a)	Zn			(b)	Sn Any of the above		
21	(c)	Ni e the correct ar		bant transition	(d)	Any of the above		
31.						ents:		
	(a)			e low melting pon not have catalyti		.,		
	(b) (c)			nibit variable oxid				
	(d)			nibit variable oxic nibit inert pair eff		ales		
32.	` ,					he periodic table is:		
J2.	(a)	10	(b)	14	(c)	28	(d)	30
33.		mber of unpair				_	(u)	50
	(a)	5	(b)	4	(c)	3	(d)	2
34.	The nu	mber of unpair	red elec		Z = 26		(4)	_
	(a)	5	(b)	6	(c)	3	(d)	4
35.		-		by open hearth		ss, the slag obtained i		•
	(a)	CaSiO ₃	(b)	FeSiO₃	(c)	MnSiO ₃	(d)	All
36.		of the followin	` '		(-)		(-)	
	(a)	Graphite	•		(b)	Diamond		
	(c)	22-Carat gold			(d)	Rhombic sulphur		
37.			cidified	l FeSO ₄ solutio		e completely oxidized	by one	mole of
	KMnO ₄	•				• ,	•	
	(a)	10	(b)	5	(c)	6	(d)	2
38.		ment in +3 oxi		state has the		nic configuration (Ar)		atomic
	numbe					. ,		
	(a)	24	(b)	23	(c)	22	(d)	21
39.		of the followin		he maximum n		of unpaired d-electro		
	(a)	Zn	(b)	Fe ²⁺	(c)	Ni ³⁺	(d)	Cu ⁺

40.	Grou	p VI B of trans	sition e	lements co	ntains:		
	(a)	Zn,Cd,Hg			(b)	Fe, Fu, Os	
	(c)	Cr, Mo, W			(d)	Mn, Te, Re	
41.	Form	ula of chromy	l chlori	de is:			(RWP 08, SGD 12)
	(a)	Cr ₂ OCl ₂	(b)	CrO_2Cl_2	(c)	Cr ₂ OCl ₃	(d) CrOCl ₂
42.	The g	geometrical sh	ape of	PCl₅ is:			(RWP 2009)
	(a)	Octahedral	_		(b)	Square planar	
	(c)	Tetrahedral			(d)	Trigonal bipyra	amidal
43.	Coina	age metals are	preser	nt in the pe	riodic table	in group:	(MTN 2008)
	(a)	I-A	(b)	I-B	(c)	II-A	(d) II-B
44.	PCI ₅	has hybridizat	ion:				(MTN 2009)
	(a)	sp	(b)	dsp ²	(c)	spd ²	(d) dsp ³
45.	The o	chemical form	ula of h	ematite is:			(MTN 09, BWP 12)
	(a)	Fe ₂ O ₃			(b)	Fe ₃ O ₄	
	(c)	FeO			(d)	$Fe_2O_3.3H_2O$	
46.	There	e are typ	es of li	gands in [P	tCl(NO2)(NF	l 3)4] ⁻²	(MTN 2010)
	(a)	2	(b)	3	(c)	6	(d) 7
47.		h of the follow	_	•	_		(BWP 2010)
	(a)	Zinc	(b)	Iron	(c)	Scandium	(d) Copper
48.	The pu	irest form of ii					(BWP 2011)
	(a)	Wrought iron		Pig iron	(c)	Cast iron	(d) Steel
49.		central metal a		ong with li	_		(DGK 2008)
	(a)	Coordination	number		(b)	Coordination s	phere
	(c)	Chelates			(d)	none of these	
50.		steel contains	carbon	1			(LHR 2012)
	(a)	0.1 to 0.2%			(b)	0.2 to 0.7%	
	(c)	0.2 to 0.6%			(d)	0.1 to 0.6%	
51.		entage of carb		teel is:			(RWP 2012)
	(a)	0.25 to 2.5%			(b)	0.12 to 0.20%	
	(c)	3.0 to 4.5%			(d)	2.0 to 4.5%	
52.			wing s	species has	s the maxin	num number (of unpaired electrons?
		,GRW 2015)					
	(a)	O ₂	(b)	O ₂ +	(c)	O ₂ -	(d) O_2^{-2}
53.			owing s	species has	s the maxin	num number (of unpaired electrons?
		,BWP 2014)	(h)	Fe ⁺²	(a)	Mn ⁺²	(d) Cr ⁺³
E#	(a)	Fe	(b)		(c)	MU.,	(*)
54.		dination numb				Four	(LHR 2014)
	(a)	Zero	(b)	Two	(c)	Four	(d) Six

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
С	d	a	a b d	a	d	С	a	d	С
11	12	13	14	15	16	17	18	19	20
b	b	b	а	b	а	b	а	С	b
21	22	23	24	25	26	27	28	29	30
d	С	а	b	b	С	b	b	С	d
31	32	33	34	35	36	37	38	39	40
С	С	a	a	d	d	b	a	b	С
41	42	43	44	45	46	47	48	4 .9	50
b	d	b	d	a	а	b	а	b	a
51	52	53	54						
a	а	С	С						

FUNDAMENTAL PRICIPLES OF ORGANIC CHEMISTRY

1.	The total coal resources of Pakistan estimated by geological survey are:										
	(a)	184 billion toni	nes		(b)	184 mill	lion tonnes				
	(c)	841 billion toni			(d)	184 ton	nes				
2.	How n	nany isomers a	re poss	ible for C ₆ H ₁₄	:						
	(a)	4	(b)	5	(c)	6		(d)	7		
3.	Which	one of the foll	lowing i	is an isomer o	f Dimet	ly ether:					
	(a)	(CH ₃) ₂ CHOH	(b)	CH₃CH2OH	(c)	CHO-CH	Ю	(d)	None		
4.		rdest form of									
	(a)	Bituminous	(b)	Sub-bitumino		` '	Anthracite	(d)	Lignite		
5.		one of the foll	_	•		-					
_	(a)	Anthracene	(b)	Phenol	(c)	Pyridine	2	(d)	Aniline		
6.		molecule has		•							
_	(a)	CH₃-CH₃	(b)	$CH_2=CH_2$	(c)	CHECH		(d)	None		
7.		rmula of anilin	e is:		(1.)	6 II NII					
	(a)	C ₆ H ₅			(b)	C ₆ H ₅ -NF					
_	(c)	C ₆ H ₅ -NH ₂			(d)	C ₆ H ₅ -NC) 2				
8.		rmula of cyclo			(-)	C 11		(4)	C 11		
^	(a)	C ₃ H ₈	(b)	C ₃ H ₄	(c)	C₃H₅		(d)	C₃H ₆		
9.		ctane number i	IS TOO TO	OF:	(h)	n Honto					
	(a)	n-Octane			(b)	n-Hepta n-Hexar					
10	(c)	Iso-Octane	oo diff	u fuam anah a	(d)		ie				
10.	(a)	logues of alkar CH ₂ group	ies airie	er irom each c	_		un				
	(a) (c)	CH ₄ group			(b) (d)	CH₃ gro CH grou					
11.		ajor componer	ats of co	al das are:	(u)	Ci i gi ot	ıμ				
	(a)	H ₂ and CH ₄	165 01 66	oai gas ai e.	(b)	Ethane	and CO				
	(c)	H ₂ and CO			(d)	H ₂ , CH ₄					
12.		mpound in wh	ich two	alkyl groups		•		un is ca	illed:		
	(a)	Ether		anty: groups	(b)	Alcohol	car bony. gre	лар 15 са			
	(c)	Ketone			(d)	Aldehyd	le				
13.	` '	nyl group is pro	esent in):	()						
	(a)	Aldehyde			(b)	Ketone					
	(c)	Alcohols			(d)	both a a	and b				
14.		nemical formul	a of ure	ea is:	()						
	(a)	(NH ₄) ₂ CO			(b)	(NH ₂) ₄ C					
	(c)	(NH ₂) ₂ CO			(d)	(NH ₄) ₂ C					
15 .	The fra	actional distilla	ation of	petroleum yi	elds onl						
	(a)	20% Gasoline			(b)	30% Ga	asoline				
	(c)	15% Gasoline			(d)	10% Ga	asoline				
16 .	Antikn	ocking agent i	s:								
	(a)	$(C_2H_5)_2Pb$			(b)	$(C_2H_5)_4F$	Pb				
	(c)	$(C_2H_5)_3Pb$			(d)	(C ₂ H ₅) ₄ F	Pd				
17 .	Father	of Organic Ch	emistry	is:							
	(a)	Faraday			(b)	Hoffmaı					
	(c)	F. Wohler			(d)	Democr	itus				

18.	The ex	ample of sp hy	bridiza	tion is:				
	(a)	Methane	(b)	Benzene	(c)	Ethene	(d)	Ethyne
19.	The nu	ımber of chain	isomer	s of Pentane a	re:			
	(a)	Three	(b)	Two	(c)	One	(d)	Zero
20.		erism is only s	shown b	y:				
	(a)	Ethers			(b)	Ketones		
	(c)	Both a and b			(d)	every organic family		
21.		e number 100	is giver	ı to:				
	(a)	n – octane		<i>(</i> -	(b)	n – Heptane		
	(c)			ne (Iso-octane)	(d)	2,2,4 – Trimethyl octa	ne	
22.	-	pe of hybridiza	ation of	carbon atom				
	(a)	sp			(b)	sp ²		
22	(c)	sp ³	.		(d)	None of these	(CDW)	2007)
23.		oiling point ran 5 – 20°C	ige or p	etroieum etne		10 – 30°C	(GRW 2	2007)
	(a)	3 – 20°C 20 – 60°C			(b)	10 − 30°C 30 − 90°C		
24	(c)	one of the foll	lowing	ic not a hotoro	(d)		(LHR 2	2000)
24.	(a)	Thiophene	(b)	Anthracene	(c)	Furan	(thk 2 (d)	Pyrrol
25.		ate of hybridiz					(u) SRW 200	•
23.	(a)	sp ³	(b)	sp ²	(c)	sp (c	(d)	dsp ²
26.		etric isomerisn	` '	•	(0)	3 p	(GRW 2	•
20.	(a)	Methane	. 13 p. C		(b)	Ethane	(0.000	-010)
	(c)	Propane			(d)	2-Butene		
27.		e bond consist	s of:		(4)	2 Bacone		
	(a)	Two sigma bon			(b)	One sigma one pi bone	d	
	(c)	One sigma and		oonds	(d)	Two pi bonds		
28.		set of hybrid (
	(a)	sp ³	(b)	sp	(c)	sp ²	(d)	dsp ²
29.	The ty	pe of hybridiza				ane is: (LHR 200	7,09)
	(a)	sp ³	(b)	sp	(c)	sp ²	(d)	dsp ²
30.	The cl	nemist who syr	nthesize	ed urea from a	mmoni	um cyanate was:	(FSD 2	2014)
	(a)	G.N. Lewis			(b)	Fredrick Wohler		
	(c)	Kolbe			(d)	Berzelius		
31.	-	rocess used to		e the quality o	_		(LHR 2	2014)
	(a)	Thermal cracking	_		(b)	Reforming		
	(c)	Steam cracking			(d)	Combustion		
32.		mer of C ₂ H ₅ OH	l is:		41.5		D, GRW 2	2015)
	(a)	CH₃OH			(b)	(C ₂ H ₅) ₂ O		
	(c)	CH₃OCH₃			(d)	CH₃COCH₃		
33.	Lineai	shape is asso	ciated v	vitn which set			CDW DV	VD 00 15\
	(a)	sp ³	(b)	sp	_	FN 08,13, SGD, FSD 09, Sp ²	(d)	dsp ²
34.		show the phe		•	(c)	(SGD 14, LH		•
34.	(a)	Metamerism	Homen	a 01.	(b)	Functional group isom		r3D 11)
	(a) (c)	Position isomer	icm		(d)	cis-trans isomerism	CHSHI	
35.		n atom in follo		sn² hybridized		CIS-CI alis ISOITICI ISIII	(LHR 2	0011)
33.	(a)	CH₃CN	(b)	CHECH	(c)	НСООН	(d)	CH ₂ Cl ₂
36.		omerism show	` '		(C)	ricoori	(LHR 2	
<i>-</i> 0.	(a)	Skeletal	by an		(b)	Position	(=1111. 2	;
	(c)	Geometric			(d)	Metamerism		
37.		dization of carb	on in c	arbonyl group		(FSD, SGD	15, RWP	10)
	(a)	sp ³	(b)	sp	(c)	sp ²	(d)	dsp ²
	()	- r-	(-)	- r-	(-)	- r-	()	

38.	How	many isomers are the	re in pentane?	(FSD 09, LHR 12, GRW 11)				
	(a)	6 (b)	5	(c)	3	(d) 2		
39.	Vital	force theory was reje	cted by:			(LHR 2012,14)		
	(a)	G.N. Lewis	-	(b)	F.Wholer			
	(c)	Greek Philosophers		(d) Sci	entists of 20th ce	entury		
40.		t one which shows cis	-trans isomeri	sm.		•		
	(FSD 2	2010)						
	(a)	$Cl_2C=CCl_2$		(b)	$CH_2=CH_2$			
	(c)	CICH=CHCI		(d)	Br ₂ C=CBr ₂			
41.	Whic	h of the following con	npound may ex	ist as ci	s-trans isomer	r ?		
	(a)	1-butene (b)	2-butene	(c)	Cyclopropane	(d) Acetone		
42.	Urea	belongs to which clas	s of compound	s?		(RWP 2009)		
	(a)	Imides	_	(b)	Amines			
	(c)	Amides		(d)	carboxylic acid			
43.		nane, each carbon ato	m is:	()	•	12, LHR 10, DGK 09)		
	(a)	sp ³ hybridized		(b)	sp ² hybridized	, ,		
	(c)	sp hybridized		(d)	unhybridized			
44.		ybridization of carbo	atom in HCHO		, , , , , , ,	(MTN, RWP 2011)		
	(a)	sp (b)	sp ²	(c)	sp ³	(d) dsp		
45.		netric isomerism in all		` '	- P	(MTN 2008)		
	(a)	Oscillation of H atoms			carbon atoms	(2000)		
	(b)	Optical rotation due to		,				
	(c)	Free rotation about C=	=C bond					
	(d)	Restricted rotation about	out C=C bond					
46.	Meta	merism is shown by:						
	(a)	Amines		(b)	Ethers			
	(c)	neither a nor b		(d)	Both a and b			
47.	Dime	thyl ether and Ethyl a	Icohol are calle	ed:		(MTN 2009)		
	(a)	Metamers		(b)	Functional grou	up isomers		
	(c)	Position isomers		(d)	cis-trans isome	ers		
48.		elf-linking property o	f elements is:			(MTN 2009)		
	(a)	Aromatization	(b)	Polyme	erization (c)	Association		
	(d)	Catenation						
49.		arbon atoms in prope	ne are:	(1.)	2	(MTN 2010)		
	(a)	sp		(p)	sp ²			
50.	(c)	sp ³ and sp ² before conversion into	o coal ic convo	(d)	sp ² and sp	(PWD 2009)		
50.	(a)	Anthracite	o coai is convei	(b)	Asphalt	(BWP 2008)		
		Lignite			all of these			
51.	Tetra	_	to netrol to:	(4)	an or triese	(BWP 2010)		
J 1.	(a)	Prevent its freezing po		(b)	Increase its bo	•		
	(c)	Prevent knocking	iii ic	(d)	Increase its vis	9 .		
52.		rude petroleum is sep	arated in fract			(DGK 2008)		
JZ .	(a)	Filtration	aracea iii irace	(b)	Fractional disti			
	(a) (c)	Steam distillation		(b)	Fractions subli			
53 .		on atom in Dimethyl e	thor ic:	(u)	i ractions subm	(DGK 2009)		
<i>5</i> 5.		sp ³ hybridized	tilei is.	(h)	sp ² hybridized	(DGR 2009)		
	(a)			(b)				
E4	(C)	sp hybridized	. icı	(d)	unhybridized	(DCV 2040)		
54.		per of isomers of C ₄ H ₁		(0)	2	(DGK 2010)		
	(a)	1 (b)	2	(c)	3	(d) 4		
55.		outyl alcohol, the terti				(MTN, SGD 2015)		
	(a)	Three hydrogen atoms	5	(b)	Two hydrogen			
	(c)	One hydrogen atom		(d)	No hydrogen a	ITOM		

1.	2.	3.	4.	5.	6.	7.	8.	9.	10
a	a	b	С	С	a	С	d	С	a
11	12	13	14	15	16	17	18	19	20
d	С	d	С	a	b	С	d	a	С
21	22	23	24	25	26	27	28	29	30
С	С	С	b	a	d	b	С	a	b
31	32	33	34	35	36	37	38	39	40
b	С	b	а	С	а	b	C	b	С
41	42	43	44	45	46	47	48	49	50
b	С	a	b	d	b	b	d	С	С
51	52	53	54	55					
С	a	b	b	d					

ALIPHATIC HYDROCARBONS

1.	An Aldehyde is reduced to Alkane with:	
	(a) KOH+N₂H₄	(b) NaOH
	(c) CaO and NaOH	(d) Co(OH) ₂
2.	Which of the following compound will not form	n Metal alkynide:
_,	(a) Ethyne	(b) Propyne
	(c) 1- Butyne	(d) 2-Butyne
3.	When a mixture of Ethene and air is passed	` ' '
	(a) Superoxide	(b) Epoxide
	(c) Ozonide	(d) Benzene
4.	Ethyl chloride when boiled with alcoholic Ko	OH gives:
	(a) Acetylene	(b) Ethylene
	(c) Ether	(d) Ethyl alcohol
5.	What type of reaction occurs between Ether	ne and hydrogen:
	(a) Addition	(b) Substitution
	(c) Oxidation	(d) Dehydration
6.	Which ion is most stable:	
	(a) CH ₃ +	(b) CH ₃ -CH ₂ +
	(c) (CH₃) ₂ CH ⁺	(d) (CH₃)₃C ⁺
7.	Mustard gas is:	
	(a) Highly viscous liquid	(b) Low boiling liquid
	(c) High boiling liquid	(d) Colourless gas
8.	Select the compound which has acidic hydro	_
	(a) Methane	(b) Ethene
	(c) Butadiene	(d) Acetylene
9.	The characteristic reactions of alkanes are:	
	(a) Polymerization	(b) Addition
	(c) Elimination	(d) Substitution
10.	Polymerization of three molecules of acetyle	ene while passing through Cu tube at 300°C
	gives:	71
	(a) Benzene	(b) n-Hexane
	(c) Naphthalene	(d) Cyclohexane
11.	The characteristic reactions of alkenes are:	ZLN A LPIP
	(a) Polymerization	(b) Addition
12	(c) Elimination	(d) Substitution
12.	The presence of pi bond in a molecule is the	
	(a) Unsaturation	(b) Inertness
12	(c) Stabilty	(d) Saturation
13.	Vinyl acetylene combines with HCl to yield:	(h) Chlaranrana
	(a) Neoprene rubber	(b) Chloroprene
1.4	(c) Poly vinyl acetylene	(d) White ppt.
14.	CH ₃ is an example of:	(h) Alkana carios
	(a) Alkenyl group	(b) Alkane series
16	(c) Alkyl group	(d) None of these
15.	When Sodium Salts of fatty acid are heated	
	(a) Na ₄ C	(b) H ₂ O
	(c) $CO_2 + N_2$	(d) Na ₂ CO ₃

16.	For each double bond, the heat of hydrog	enati	on of Alkene is:
	(a) 110 K.J mol ⁻¹		(b) 130 K.J mol ⁻¹
	(c) 115 K.J mol ⁻¹		(d) 120 K.J mol ⁻¹
17 .	The alkenes react with aqueous solution	of ha	logen acid to form:
	(a) Alcohols	(b)	Aldehyde
	(c) Alkanes	(d)	Alky halides
18.	Which of following is used as a general a	nesťh	etic:
	(a) Ethane		Propane
	(c) Ethenol		Ethene
19.	Alkyl halides on treatment with active me		
	(a) Alkene		Alkyne
	(c) AIkane		Alcohol
20.	Which of following is prepared by oxidati	. ,	
	(a) Acetone		Ethyl alcohol
	(c) Formic acid	. ,	None
21.	Acetylene gives:	(4)	Hone
	(a) White ppt. with ammonical AgNO ₃ and red	nnt v	with ammonical Cu(NO2)2
	(b) With ppt. with ammonical AgNO ₃ and red p		
	(c) White. ppt. with both	pc. w	arranomear eazerz
	(d) Red ppt. with both		
22.	The order of reactivity of halogens in alip	hatic	substitution reactions:
ZZ.	(a) $Br_2 > Cl_2 > F_2$		Cl ₂ > Br ₂ >F ₂
	(a) $B_1 \ge C_1 \ge F_2$ (c) $F_2 > C_1 \ge B_{r_2}$	` ,	$F_2 > Br_2 > CI_2$
23.	The IUPAC name of the compound having		
23.	(a) 1, 1 – Dimethyl-3-butene		1, 1, 1 - Trimethyl-3 propene
	(c) 3, 3 – Dimethyl-1-butene		3, 3,3 – Trimethyl-1-propene
24.	For preparing a symmetrical alkane, a		
47.	potassium salt of saturated carboxylic ac		
	(a) Hydrolysis		Oxidation
	` ' ' '	` ,	
25	(c) Hydrogenation		Electrolysis
25.	The reaction/method that does not give a		
	(a) Catalytic hydrogenation of Alkene		Wurtz reaction
26	(c) Hydrolysis of alkyl magnesium bromide		Dehydrohalogenation of an alkyl halide
26.	A fuel has the same knocking property		
	Trimethylpentane) and 30% n-Heptane b	-	-
	(a) 100	(p)	
27	(c) 50	(d)	
27.	Hydrocarbon which is liquid at room temp	-	
	(a) Hexane		Butane
20	(c) Ethane	(a)	Propane
28.	Marsh gas was the name given to:	(I-)	Ellerer
	(a) Methane	. ,	Ethane
	(c) Propane	` '	Butane
29.	Each different compound should have	a diff	rerent name" was published by IUPAC
	system of nomenclature in:	(1.)	4020
	(a) 1892	. ,	1830
	(c) 1947	` ,	1979
30.	Write the name of following Alkene CH ₂ =		
	(a) 1, 3-Butadiene	. ,	Buta -1 , 3 diene
	(c) Both a & b	(d)	None
31.	CnH _{2n} is the general formula of:		
	(a) Alkanes		Alkenes
	(c) Alkynes	(d)	None of above

32.		I halide reacts with Zinc in the presence of a
	catalyst; the reaction is called:	
	(a) Sabatier-Sendern's reaction	(b) Wurtz Synthesis
	(c) Frankland's Reaction	(d) Clemmenson's reduction
33.	The method in which alkane is prepare	ed by Alkyl halide in the presence of Palladium
	charcoal, is:	
	(a) Hydrolysis	(b) Electrolysis
	(c) Hydrogenation	(d) Hydrogenolysis
34.	Kolbe's method is not useful for the pro	oduction of:
	(a) Methane	(b) Ethane
	(c) Butane	(d) Hexane
35.	Kolbe's method has limited synthetic a	pplications due to:
	(a) Use of electrical energy	(b) Slow reaction
	(c) Number of side products	(d) Salts used are very expensive
36.	The reaction in which a Ketone is reduce	ced to the alkane is called:
	(a) Kolbe's electrolysis	(b) Clemmensen's reduction
	(c) Cannizzaro	(d) None
37.	Alkanes containing carbons C-18 onwa	rds are:
	(a) Gases	(b) Liquids
	(c) Waxy solids	(d) Solids
38.	Alkanes are soluble in all except:	
	(a) Benzene	(b) Ether
	(c) Water	(d) Carbon tetra chloride
39.	The property of an alkane which does r	not increase with increase in molar mass:
	(a) Boiling point	(b) Melting point
	(c) Density	(d) Solubility
40.	The low reactivity of alkanes is based u	ipon:
	(a) Inertness of sigma-bond	(b) Non-polarity of the bonds
	(c) Both a and b	(d) None of above
41.	Complete combustion of alkane yields:	
	(a) $CO_2 + H_2O$	(b) CO ₂ + Heat
	(c) $CO_2 + H_2O + CO$	(d) $CO_2 + H_2O + Heat$
42.	The major reaction occurring in the eng	gines of automobiles is:
	(a) Oxidation	(b) Reduction
	(c) Combustion	(d) Decomposition
43.	Incomplete oxidation of alkanes yields	:
	(a) CO ₂ & carbon black	(b) $CO_2 + CO$
	(c) CO+H ₂ O+carbon black	(d) CO ₂ +heat
44.	The order of reactivity of halogen acids	s towards alkenes:
	(a) HCl > HBr >HI	(b) HBr >HCl>HI
	(c) HCl > HBr>HF	(d) HI > HBr >HCl
45.	Raney – Nickel is the alloy of Ni with:	
	(a) Pt	(b) Al
	(c) Cu	(d) Pd
46.	Polymerization of Ethene to Polyethy	lene take place at pressure of 100 atm and a
	temperature of:	
	(a) 200°C	(b) 400°C
	(c) 600°C	(d) 800°C

47.	During the preparation of alkynes the active metals that reacts with Tetrahalo-alkane									
	is:									
	(a) Zn		(b) Mg							
	(c) Both a and b		(d) None							
48.	Alkynes are colorless & odorless exc	ept:								
	(a) Acetylene	(b)	Propyne							
	(c) Butyne	(d)	Pentyne							
49.	An Alkyne having Carbon atoms =15 is most probably a:									
	(a) Gas	(b)	Liquid							
	(c) Solid	(d)	Waxy solid							
50 .	The reaction of Acetylene with water in H ₂ SO ₄ and HgSO ₄ yields:									
	(a) Vinyl alcohol		Acetaldehyde							
	(c) Mixture of both a and b	(d)	None							
51 .	The gas used for illumination:	• • •								
	(a) Methane	(b)	Ethene							
	(c) Ethyne	(d)	None							
52.	The Alkynides are used for the	of alky	nes							
	(a) Preparation	-	Purification							
	(c) Separation	(d)	All of above							
53.	Formula of chloroform is:	()								
	(a) CH₃Cl	(b)	CH ₂ Cl ₂							
	(c) CHCl ₃	` ,	CCl ₄							

1.	2.	3.	4.	5.	6.	7.	8.	9.	10
a	d	b	b	a	d	С	d	d	a
11	12	13	14	15	16	17	18	19	20
b	а	b	С	d	d	d	d	С	b
21	22	23	24	25	26	27	28	29	30
b	С	С	d	d	b	а	a	d	С
31	32	33	34	35	36	37	38	39	40
b	С	d	а	С	b	С	С	d	С
41	42	43	44	45	46	47	48	49	50
d	С	С	d	b	b	С	a	С	С
51	52	53							
а	А	_							

AROMATIC HYDROCARONS

1.	Most comm	on reaction	ns of b	enzene and it	s deriva	tives are:		
	(a) Elec	trophilic add	ition rea	actions	(b)	Electrophilic substituti	ion reacti	ons
	(c) Nucl	eophilic add	ition rea	actions	(d)	Nucleophilic substituti	ion reacti	ons
2.	Benzene +	Ozone →Y,	in this	sequence Y	is:			
	(a) Benz	zene monozo	onide		(b)	Benzene diozonide		
	(c) Ben	zene triozoni	ide		(d)	Succinic acid		
3.	Which spec	ies represe	nts the	e electrophile	in aron	natic Nitration:		
	(a) NO ₂		(b)	NO_2^+	(c)	NO ⁺	(d)	NO_3
4.	Heating a n	nixture of S	Sodium	benzoate an	d soda l	ime gives:		
	(a) Ben	zene			(b)	Methane		
		um benzoat			(d)	Calcium benzoate		
5.	Which of th	e following	j speci	es participate	in Sulp	honation of benzene	ring:	
	(a) SO ₃ -	2	(b)	$S_2O_3^{-2}$	(c)	SO₃	(d)	SO_2
6.	The compo	und prepar	ed by e	electrophilic s	ubstitut	tion reaction of benz	ene is:	
	(a) Acet	ophenone			(b)	Glyoxal		
	(c) Cycl	ohexane			(d)	Hexabromo cyclohexa	ane	
7.	The term 'A	romatic' w	as deri	ved from:				
	(a) Gree	ek word	(b)	Latin	(c)	Russian	(d)	English
8.	Which com	oound was	recogi	nized as the p	arent m	ember of aromatic o	ompoun	ıds:
	(a) Anili	ne	(b)	Phenol	(c)	Benzene	(d)	Toluene
9.	Which one	of the follo	wing is	not monocy	clic aror	natic hydrocarbon:		
	(a) Benz	zaldehyde			(b)	Benzoic acid		
	(c) Benz	zene sulphor	nic acid		(d)	Anthracene		
10.	In which on	e of the fol	lowing	compound ri	ings are	not fused together a	t ortho p	ositions:
	(a) Phei	nanthrene			(b)	Naphthalene		
	(c) Diph	eny lmethar	ne		(d)	Anthracene		
11.	Toluene is o	called:						
	(a) Hyd	roxyl benzer	e (b)	Methyl benzer	ne (c)	Ethyl benzene	(d)	None
12.	Substituted	phenyl gro	oups a	re called:				
	(a) Aryl	groups			(b)	Phenyl groups		
	(c) Acyl	groups			(d)	Alkyl groups		
13.	Benzene wa	as discover	ed by I	Michael Farad	lay's in:			
	(a) 1824	1	(b)	1825	(c)	1826	(d)	1827
14.	The empirion	al formula	of Ben	zene was det	termine	d by:		
	(a) IR s	pectra			(b)	U.V		
	(c) Elen	nental analys	sis		(d)	NMR spectra		
15.	How many	molecules	of chlo	rine add to b	enzene i	in the presence of su	nlight:	
	(a) One		(b)	Two	(c)	Three	(d)	Four
16.	The bond a	ngles in be	nzene	ring are:				
	(a) 90°		(b)	120 ⁰	(c)	145 ⁰	(d)	None
17.	All C-H bon	d lengths o	f benz	ene ring is:				
	(a) 1.07	A ^O	(b)	1.09A ^O	(c)	1.08A ^O	(d)	None
18.			ontain	ing one doub	le bond	is called:		
	(a) Cycl	ohexene	(b)	Cyclohexane	(c)	Benzene	(d)	None
19.	Hybridizatio	on of each	carbon	atom in ben	zene rin	g is:		
	(a) sp		(b)	sp ²	(c)	sp ³	(d)	dsp ²

20.	The st	ability of aror	natic co	mpounds	s wi	th the i	ncrease in th	e numl	per of its
		nce structures		•					
	(a)	Decreases			(b)	Increas	ses		
	(c)	Remains consta	ant		(d)	partiall	y decreases		
21.	Benzer	ne is obtained	from Be	enzene su	lphonic acid	d by trea	nting it with:		
	(a)	HCI	(b)	NaOH	(c)	H_2O		(d)	NaHCO ₃
22.	Which	Electrophilic s	ubstitu	tion react	ion is too v	igorous [•]	to control:		
	(a)	Chlorination			(b)	Bromin	nation		
	(c)	Iodination			(d)	Fluorin	ation		
23.	Sulphu	ric acid gener	ates nit	ronium io	n by reacti	ng it wit	h:		
	(a)	Nitric acid			(b)	Nitroge	en gas		
	(c)	Nitrous acid			(d)	Potass	ium nitrate		
24.	Benzer	ne reacts with	ozone a	nd gives:					
	(a)	Glycerin			(b)	Glyoxa	I		
	(c)	Maleic anhydric	de		(d)	Benzoi	c acid		
25.	Alkyl b	enzene are re	adily ox	idized by	acidified:				
	(a)	KMnO ₄	(b)	K_2CO_3	(c)	MnO_2		(d)	Mn
26.	The ele	ectron releasin	g effect	of Methy	l group is si	gnifican	t and it makes	s the rin	g a good:
	(a)	Electrophilic			(b)	Nucleo	philic		
	(c)	Nucleophobic			(d)	Hydrop			
27.	Meta d	irecting group	s decre	ase the	of be	nzene ri	ng:		
	(a)	Melting point	(b)	Chemical	,	(c)	Density	(d)	None
28.		class of compo	ound is	most reac					
	(a)	Alkane			(b)	Alkene			
	(c)	Alkyne			(d)	Benzer			
29.		of the following	_		ed as a cata	-	riedel Craft's		
	(a)	AICI ₃	(b)	HNO ₃	(c)	$BeCl_2$		(d)	NaCl
30.	Aroma	tic hydrocarbo							
	(a)	Normal series				Benzer	ne	(d)	None
31.		one of the foll	_	s (m-xyle	-				
	(a)	1,2-Dimethyl b			(b)	•	methyl benzene		
	(c)	1,5-Dimethyl b			(d)		methyl benzene		
32.		tration of ben			when it is	heated	with a mixtu	re of co	nc. HNO₃
		nc. H₂SO₄ at 5							
	(a)	1:2	(b)	1:1	(c)	1:3	_	(d)	2:1
33.		ree alternate s						alled:	
		Conjugate bon	ds						
	(c)	Both a and b			(d)		of above		
34.		fference betw		nount of	heat actua	ally rele	ased and the	e experi	imentally
		ited heat is cal	lled:		4.5	_			
	(a)	Bond energy			(b)		ance energy		
	(c)	Binding energy			(d)	None			
35.		ortho & Para			-	+		<i>(</i> 1)	
	(a)	-X	(b)	-OH	. (c)	-NR₃		(d)	-NH ₂
36.		tution of halog	jens in t	he benzei			ich catalyst?		
	(a)	NaCl			(b)	FeCl₃			
	(c)	SiO ₂			(d)	_	o - nickel		
37.		one of the foll	_						
	(a)	Alkene	(b)	Alkyne	(c)	Benzer		(d)	All
38.		ne is prepared	trom n-	Hexane ii	-		nich catalyst?	?	
	(a)	Cr ₂ O ₃			(b)	Al ₂ O ₃			
	(c)	SiO ₂			(d)	Fused	mixture of a, b	and c	

39.	Benz	ene cannot undergo:										
	(a)	Substitution reactions		(b)	Additional reaction							
	(c)	Oxidation reaction		(d)	Elimination reaction							
40.	Orth	o, para derivatives are	obtained by	/ halogena	ations of:	(LHR	2011)					
	(a)	Nitrobenzene		(b)	Toluene							
	(c)	Benzaldehyde		(d)	Benzene							
41.		ene is prepared from (Cyclohexane	by the pr	rocess called: (LHR 2008							
	(a)	Hydrogenation	-	(b)	Dehydration							
	(c)	Dehydrogenation		(d)	None of these							
42.	The o	The conversion of n-Hexane into benzene by heating in the presence of Pt is called:										
	(a)	Isomerism		(b)	Aromatization							
	(c)	Dealkylation		(d)	Rearrangement							
43.	Whic	ch compound is the mo	st reactive o	one?								
	(a)	Benzene (b)	Ethene	(c)	Ethane	(d)	Ethyne					
44.	Wha	t is the molecular form	nula of TNT?									
	(a)	$C_6H_2(NO_2)_3CH_3$		(b)	$C_6H_2(NO_2)$ CH_3							
	(c)	$C_6H_2(NO_2)_3C_2H_5$		(d)	$C_6H_2(NO_2)_3C_3H_7$							
45 .	Mole	cule of benzene conta	in		(GRW 20	11,14)					
	(a)	Three double bonds		(b)	Two double bonds							
	(c)	One double bond		(d)	Delocalized л-electron	charge						
46.	Nitra											
	(a)	m-position		(b)	p-position							
	(c)	0-position		(d)	both 'o' and 'p' position	ns						
47.		nance energy of benze	ene is:			(LHR	2012)					
	(a)	150.5 KJ/mol		(b)	140.5 KJ/mol							
	(c)	155 KJ/mol		(d)	145 KJ/mol							
48.		hich compound benzer	ne rings are									
	(a)	Diphenyl methane		(b)	Naphthalene							
	(c)	Anthracene		(d)	Phenanthrene							
49.		ence of double or triple	e bond is a s	_		(SGD	2011)					
	(a)	Un-saturation		(b)	Saturation							
	(c)	Addition		(d)	Substitution							
50.		ene reacts with alkyl	and acyl ha	lides in tl	he presence of AlCl ₃ .	This re	action is:					
		P 2008)		<i>(</i> 1.5)	A11.1							
	(a)	Freidel Crafts reaction		(b)	Aldol condensation							
	(c)	Halogenations reaction	ו	(d)	Nitration reaction							

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
b	С	b	a	С	a	а	С	d	С
11	12	13	14	15	16	17	18	19	20
b	a	b	С	С	b	b	a	b	b
21	22	23	24	25	26	27	28	29	30
С	d	а	b	а	b	b	b	а	С
31	32	33	34	35	36	37	38	39	40
b	b	С	b	С	b	С	d	d	b
41	42	43	44	45	46	47	48	49	50
С	b	b	a	d	d	а	a	а	a

ALKYL HALIDES

1.	Electr	ophile among	st the fo	llowing is:				
	(a)	NH ₃	(b)	H ₂ O	(c)	BF ₃	(d)	Cl_2
2.	SN ₂ m	nechanism inv	olves:					
	(a)	1st order kin			(b)	2nd order kinetics		
	(c)	3rd order kin			(d)	Zero order kinetics		
3.	-	magnesium h	-	-	-	en hydrolyzed yields:		
	(a)	Alkane	(b)	Alkene	(c)	Alkyne	(d)	Alkyl
_	halide							
4.						rd's reagent with:		
_	(a)	Aldehyde	(b)	Ketone	(c)	Water	(d)	Amine
5.	-	Halides are:	(1.)	5.11		5 1 1 1 11	<i>(</i> 1)	
_	(a)	Monohaloalk				Polyhaloalkanes	(d)	All
6.				_		eagent to alkane:	<i>(</i> 1)	AU C
	(a)	H₂O	(b)	NH₃	(c)	Ethyl alcohol	(d)	All of
-	these				11 O H			
7.		HBr > HI > 1		IX → C2П5-X +		e order of reactivity of HI > HCl > HBr	TAX IS:	
	(a)	HCl > HBr >			(d)	HI > HBr > HCl		
8.	(c)	nci > ndi >	ПІ		(d)	UI > UDI > UCI		
0.	(a)	Electrophiles	(b)	Nucleophiles	(c)	Group of atoms	(d)	Free
	radical	Liecti opinies	(D)	Nucleophiles	(c)	Group or atoms	(u)	1166
9.		dary alkyl ha	lides folk	OW				
J .	(a)	First order ki		011	(b)	Second order kinetics		
	(c)	Both a and b			(d)	none of these		
10.	` '	₃CBr preferab		anes:	(u)	Horic of these		
	(a)	SN ₂ reactions	-	9000.	(b)	SN ₁ reactions		
	(c)	both a and b			(d)	none of these		
11.	` '			lcoholic KOH to	` ,			
	(a)	C ₂ H ₄	(b)	C ₂ H ₅ OH	(c)	C ₂ H ₆	(d)	None of
	these		()		()		()	
12.	When	an alcohol	reacts w	ith SOCl ₂ an	alkyl ł	nalide is formed what	t are t	wo other
	produ	icts:						
	(a)	SO ₂ and HCl			(b)	SO ₂ and H ₂ O		
	(c)	HCl and H ₂ O			(d)	H ₂ S and HCl		
13.	Which	n of the follow	ving is no	ot a nulceophile	e:			
	(a)	OH-	(b)	NH₃	(c)	C ₂ H ₅ O⁻	(d)	Br ⁺
14.	Which		ving reac			an alkyl halide:		
	(a)	SN_1	(b)	SN_2	(c)	Addition		Elimination
15.	-		alides, tl	ne halogen ato	om is a	attached to a carbon	which i	is further
		ned to:						
	(a)	One Carbon			(b)	Two Carbon atoms		
	(c)	Three Carbo			(d)	Four Carbon atoms	_	
16.			_		-	n give primary alcohol	-	
	(a)	Epoxide	(b)	Peroxide	(c)	Super oxide	(d)	Hydrogen

17.	S _N 1 reactions are easily given by:						(LHR 2012)		
	(a)	Primary alkyl h	alide		(b)	Secondary alkyl halide			
	(c)	Secondary alco			(d)	Tertiary alkyl halides			
18.	Thiony	l chloride reac	ts with	alcohol to form	n:				
	(a)	Mustard gas	(b)	Alkyl halide	(c)	Aldehyde	(d)	Alcohol	
19.	Which	of the following	ng is a S	odium Lead al	loy:				
	(a)	NaPb	(b)	Na₂Pb	(c)	Na₃Pb	(d)	Na₄Pb	
20.	Second	dary alcohol is	formed	when Grignar	d's rea	gent reacts with:			
	(a)	Propanone			(b)	Methanal			
	(c)	Ethanal			` ,	nanoic acid			
21.	When	Grignard reage							
	(a)	1- Alkanal	(b)	1- Alkanol	(c)	Carboxylic acid	(d)	None	
22.						preparing alkyl chloric			
	(a)	HCl+ anhydrou			(c)	PCl ₅	(d)	SOCl ₂	
23.		n atom holding	_	n in Alkyl halio		2			
	(a)	sp ² - hybridized			(b)	sp ³ -hybridized			
	(c)	sp-hybridized	_		(d)	sp ³ d- hybridized			
24.		of the following	ng does	not give Iodol					
	(a)	Ethanol			(b)	Ethanal			
	(c)	Acetophenone	- -		(d)	Benzophenone			
25.		ond is stronges							
	(a)	CH₃Cl	(b)	CH₃Br	(c)	CH₃F	(d)	CH₃I	
26.		kyl halide is co	nverted	l into an alcoh					
	(a)	Addition			(b)	Substitution			
	(c)	Dehydrohaloge			(d)	Elimination			
27.		thane reacts w		-	-		(4)	Dutana	
20	(a)	Ethane	(b)	Ethene	(c)	Butene	(d)	Butane	
28.		Dibromopropa					(4)	Havana	
20	(a)	Propene	(b)	Propane	(c)	Cyclopropane	(d)	Hexane	
29.	-	alcohol gives E	-				(4)	I/Cl	
20	(a)	SOCl ₂	(b)	NaCl	(c)	Cl ₂	(d)	KCl	
30.		e nitrile is form				Dutal plackal	(4)	Duonid	
	(a) Chlorido	Propyl alcohol	(D)	Butyl chloride	(c)	Butyl alcohol	(d)	Propyl	
31.	Chloride		troatm	ont with alcoh	olic zin	o divoci			
31.		omoethane on Ethyl bromide	(b)	Ethane			(4)	Ethyno	
32.	(a) S1 ro:	action of Alkyl			(c)	Ethane	(d)	Ethyne	
JZ .		Retention of co			(b)	Inversion of configurati	on		
	(a)	Both a and b	migurac	1011	(d)	None of these	OH		
33.	(c) Which		owing v	will have the m		m dipole moment:			
JJ.	(a)	CH ₃ F	(b)	CH₃Cl	(c)	CH₃Br	(d)	CH₃I	
34.		action of an Al					(u)	CI 131	
J-T.	(a)	Ester	Kyi ilali	ue with Recon	(b)	Ether			
	(a) (c)	Aldehyde			(d)	Carboxylic acid			
35.		strate of a typica	I S.,2 ro	action is:	(u)	Cai boxylic acid	(FSD 2	012)	
<i>3</i> 3.	(a)	Primary alkyl h		action is.	(b)	Secondary alkyl halide	(130 2	012)	
	(a) (c)	Secondary alco			(d)	Tertiary alkyl halides			
36.		eactive Alkyl h		warde S.,1 roa					
3 0.		n-Butyl chloride		walus SNI ICa					
	(a)	ter-Butyl chlori			(b) (d)	Sec-Butyl chloride Allyl chloride			
37.	(c) Which	responds +vel		rde Todoform +		Allyl Chloride			
J/.	(a)	1-Butene	y towa	us toudidilli l	(b)	Butanal			
	(a) (c)	Acetic acid			(b)	2-Pentanone			
	(८)	הנכנונ מנוע			(u)	Z r chianone			

	trophile among		_				
(a)	NH ₃	(b)	H₂O	(c)	BF ₃	(d)	Cl_2
	order of a typic	cal SN ₂ I	reaction is:				
(FSD	2010) Zero	(b)	First	(c)	Second	(d)	Third
	ch of the follow			(c) hilo2	Second	(u)	mu
(a)	H ₂ O	(b)	H ₂ S	(c)	BF ₃	(d)	NH ₃
` '	hich two mech	` ,				(-)	5
(a)	E1 and E2			(b)	E2 and S _N 2		
(c)	E1 and S _N 1			(d)	S _N 1 and S _N 2		
SN ₂	reactions are:			` ,			
(a)	Unimolecular			(b)	Bimolecular		
(c)	Trimolecular			(d)	Tetramolecular		
Elim	ination bimole	cular re	action involve	es kinetic		(LHR	2014)
(a)	1 st order			(b)	2 nd order		
(c)	3 rd order			(d)	Zero order		
_				atom at	ttached to a carbon	atom i	s further
	ched to how m	any car	bon atoms:				
(a)	Two			(b)	Three		
(c)	One			(d)	Four		
	ination bimole		action involve		6 1 1 1		
(a)	First order kir			(b)	Second order kinetics		
(c)	Third order ki			(d)	Zero order kinetics		
-	'I magnesium b Ethane	romiae	reacts with v		Methane		
(a) (c)	Propane			(b) (d)	n-butane		
		ohtaine	d by treating		's Regent with:		
(a)	HCHO	(b)	CH ₃ CHO	(c)	CH ₃ COCH ₃	(d)	CO ₂
					tom changes from:	` ,	WP 2009)
(a)	sp	ciic iiy.	orialization or	(b)	sp ²	(2003)
(c)	dsp ²			(d)	none of these		
	iary alcohol is o	obtaine	d by treating			(R	WP 2009)
(a)	HCHO	(b)	CH₃CHO	(c)	CH ₃ COCH ₃	(D)	CO ₂
	er and molecula					` ,	WP 2011)
(a)	1,2	(b)	2,1	(c)	2,2	(d)	0,1

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
С	b	а	b	а	d	d	b	С	b
11	12	13	14	15	16	17	18	19	20
a	а	d	С	а	а	d	b	b	С
21	22	23	24	25	26	27	28	29	30
b	b	b	d	С	b	d	С	a	d
31	32	33	34	35	36	37	38	39	40
d	С	а	а	а	С	d	С	С	С
41	42	43	44	45	46	47	48	49	50
С	b	b	С	b	a	а	d	С	С

ALCOHOLS, PHENOLS AND ETHERS

1.	Which compound will have maximum re	epulsion with H₂O?
	(a) C ₆ H ₆	(b) C ₂ H ₅ OH (c)
	CH ₃ CH ₂ CH ₂ OH	(d) C ₆ H ₅ OH
2.	When Ether is protonated, the conjugate a	cid formed is called:
	(a) A Carbonion	(b) Oxide ion
	(c) An Oxonium ion	(d) A Hydronium ion
3.	When ethyl bromide is heated with Ag ₂ C	
	(a) Ethanol	(b) Ethene
	(c) Ethanal	(d) Diethyl ether
4.	When diethyl ether is treated with PCI ₅	
-	(a) Ethanol	(b) Triethyl phosphine
	(c) Ethyl chloride	(d) Oxonium ion
5.	2-Alkanol on oxidation forms:	(a) exeman ion
•	(a) Ether	(b) Aldehyde
	(c) Ketone	(d) Carboxylic acid
6.	Which substance is used as an Antifreez	` , ,
•	(a) Methanol	(b) Ethanol
	(c) Acetone	(d) Acetic acid
7.		ct to give a yellow precipitate of CHI3 when
•	heated with l_2 in alkaline solution:	et to give a yenow precipitate or emis when
	(a) CH₃OH	(b) C₃H ₇ OH
	(c) CH ₃ CH ₂ CH(OH)CH ₂ CH ₃	(d) CH₃CH₂OH
8.	Alcohols on heating withgive alker	
.	(a) Oxygen	(b) Conc. H ₂ SO ₄
	(c) PCl ₃	(d) Conc. HNO ₃
9.	Carbolic acid is the other name of:	(d) conc. Theos
,	(a) Phenol	(b) Biphenyl
	(c) Picric acid	(d) H ₂ CO ₃
10.	Alcohols andreact to produce este	` ,
10.	(a) Water	(b) Ethers
	(c) Carboxylic acid	(d) Ketones
11.	Oxidation ofalcohol gives aldehyde	` ,
	(a) Primary	(b) Secondary
	(c) Tertiary	(d) Quaternary
12.	Which compound is more soluble in wat	` , - ,
14.	(a) C ₂ H ₅ OH	(b) CH₃COCH₃
	(a) C ₂ H ₃ OH (c) CH ₃ OH	(d) C₀H₅OH
13.	Which compound shows maximum hydr	
IJ.	(a) CH ₃ -O-CH ₃	(b) CH ₃ -OH
	(a) C13-O-C13 (c) C ₂ H ₅ -OH	(d) C ₆ H ₅ -OH
14.	Which enzyme is not involved in fermen	
17.	(a) Diastase	(b) Maltase
15.	(c) Zymase	(d) Urease
13.	Methyl alcohol is used as:	(h) an anti franzina agent
	(a) a drink	(b) an anti freezing agent
16	(c) a preservative for biological specimen	(d) a substitute for petrol
16.	Only maximum% alcohol is obtained	
	(a) 14	(b) 24
	(c) 95	(d) 100

17.	Ethene is formed when Ethyl alcohols reac	
	(a) 180°C	(b) 150°C
	(c) 120°C	(d) 110°C
18.	Dow's method helps in preparation of:	
	(a) Biphenyl	(b) Benzene
	(c) Phenol	(d) Ester
19.	When phenol react with alkali it forms:	
	(a) Acid	(b) Salt
	(c) Base	(d) None of these
20.	Phenol reacts with zinc dust and forms:	
	(a) Benzene	(b) Acetylene
	(c) Molozonide	(d) Ozonide
21.	Bakelite is formed when phenol reacts wit	ո։
	(a) Acetaldehyde	(b) Farmaldehyde
	(c) Propanoic acid	(d) Butanoic acid
22.	Ethers reacts with hydrogen iodide to give	•
	(a) Alcohol	(b) Phenol
	(c) Alcohol+ Alkyl halide	(d) Aldehyde
23.	Which one is primary alcohol:	
	(a) Buten-2-ol	(b) Propan-2-ol
	(c) Butan-1-ol	(d) 2, 3- Dimethylhexane-4-ol
24.	Ethyl alcohol is industrially prepared from	ethylene by:
	(a) Permanganate oxidation	(b) Catalytic reduction
	(c) Absorbing in H ₂ SO ₄ followed by hydrolysis	(d) Fermentation
25.	Ethanol containing some quantity of metha	anol is called:
	(a) Absolute spirit	(b) Rectified spirit
	(c) Wood spirit	(d) Methylated spirit
26.	Hydrolytic conversion of Sucrose into gluce	ose and fructose in known as:
	(a) Induction	(b) Inversion
	(c) Insertion	(d) Inhibition
27.	Alcohols of low molecular weight are:	
	(a) Soluble in water	(b) Soluble in water on heating
	(c) Insoluble in water	(d) Insoluble in all solvents
28.	Fermentation is a:	
	(a) Chemical process	(b) Biochemical process
	(c) Engineering process	(d) Physical Process
29.	Ethyl alcohol on oxidation with acidified Ka	:Cr ₂ O ₇ gives:
	(a) Acetic Acid	(b) Acetaldehyde
	(c) Formaldehyde	(d) Formic acid
30.	C ₂ H ₅ OH can be differentiated from CH ₃ OH	by:
	(a) Lucas Test	(b) Baeyer's Test
	(c) Iodoform test	(d) None
31.	Ethyl alcohol on treating with Conc. H ₂ SO ₄	at 140°C yields:
	(a) Ethene	(b) Diethyl Ether
	(c) Ethyl acetate	(d) Ethanoic acid
32.	Which of the following statements is corre	ct:
	(a) Phenol is less acidic than Ethanol	(b) Phenol is more acidic than Ethanol
	(c) Phenol is more acidic than Acetic acid	(d) None
33.	Isopropyl alcohol on oxidation gives:	. ,
	(a) Acetone	(b) Ether
	(c) Ethylene	(d) Acetaldehyde
34.	Which of the following is the most suitable	
	from ethanol:	-
	(a) Reacting with Na metal	(b) Passing dry HCl through it
	(c) Distilling in presence of CaO	(d) Reacting with Mg

35.		cts with Etha	nol to pr	oduce:					
	(a) H ₂	-				` ,	Benzene		
	(c) CO:					(d)	CO gas		
36.		acid is:							
		l, 6- Trinitrotolı					2, 4, 6-Tribromet	hanol	
		ł, 6-Trinitrophe					Para-Nitrophenol		
37.		ic acidic com _l	oound w	ithout a ca	arbox				
	` '	orbic acid				. ,	Vinegar		
	` '	alic acid				. ,	Picric acid		
38.		nol can be pr	epared f	rom hydr	ogena	ation of	:	(LH	R 2011)
	(a) CH						CH₃Br		
	(c) H(CH₃CHO		
39.	Pheno	ol reacts with	acetyl cl		the p	resence	e of a base to for	m an: (LH	R 2008)
	(a)	acid	(b)	alcohol		(c)	aldehyde	(d)	
	ester								
40.		ol obtained by	y fermen	tation ne	ver ex			(LH	R 2014)
	(a)	10%				(b)	16%		
	(c)	14% alcohol		(-)	5% al				
41.	Pheno		acetyl cl	hloride in	the p		e of a base to for	m an:	
	(a)	Acid				. ,	Alcohol		
	(c)	Aldehyde				(d)	Ester		
42.	_	droxy propai	noic acid	is called:					
	(a)	Oxalic acid				. ,	Lactic acid		
	(c)	Citric acid				(d)	Aspartic acid		
43.	-	l alcohol is n						-	V 2014)
	(a)	As a substitut			king		As a substitute for	r petrol	
	(c)	For denaturin				(d)	All		
44.		liquid is call	ed wood	spirit?				(GR)	W 2011)
	(a)	CH₃OH					C ₂ H ₅ OH		
	(c)	CH₃COOH					CH ₃ OCH ₃		
45 .		of reactivity						(LH	R 2012)
	(a)	Tertiary alcoh							
	(b)	Primary alcoh							
	(c)	Secondary ald							
	(d)	Tertiary alcoh					cohol		
46.		compound is	s called a	universa	l solv		OLL OLL		
	(a)	H₂O					CH₃OH		
	(c)	C ₂ H ₅ OH					CH₃OCH₃		
47.		ol and metha		oe aisting	uisne			(MTN 08,	FSD 10)
	(a)	Iodoform test				` ,	Lucas Test		
	(c)	Benedicts tes				(d)	Tollen's test		
48.		s show the ph		a ot:		(1.)			
	(a)	Position isom	erism				Functional group		
	(c)	Metamerism			_	(d)	Cis-trans isomeris		
49.		enzyme is n	ot invoiv	ea in tern	nenta			(LHR 2	(014,15)
	(a)	Diastase				(b)	Zymase		
FΛ	(c)	Urease			l	(d)	Invertase	., bala	- to
50.					ріасе	_	roup of alcohol b	-	
	(a)	HOCI	(b)	Br ₂		(c)	SOCl ₂	(d)	I_2

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
a	С	d	С	С	a	d	b	a	С
11	12	13	14	15	16	17	18	19	20
a	С	b	d	b	a	а	b	b	а
21	22	23	24	25	26	27	28	29	30
b	С	С	d	d	b	а	b	b	С
31	32	33	34	35	36	37	38	39	40
b	b	а	С	а	С	d	С	d	С
41	42	43	44	45	46	47	48	49	50
d	b	а	а	а	а	а	С	С	С

ALDEHYDES AND KETONES

1.	Which one of the following undergoes Cannizzaro's reaction in the presence of dilute aqueous sodium hydroxide?									
	(a) HCHO (c) CH₃-CH₂-CHO	(b) CH₃CHO (d) CH₃-COCH₃								
2.	Formaldehyde condenses with phenol in the	he presence of dilute base to yield:								
	(a) Nylon-6,6	(b) Urotropine								
	(c) Aniline-formaldehyde	(d) Bakelite								
3.	Calcium acetate on dry heating yields:									
	(a) HCHO	(b) CH₃CHO								
	(c) CH₃COCH₃	(d) CH₃COOH								
4.	Air oxidation of methanol produces:									
	(a) Ethanol	(b) Methanal								
_	(c) Mixture of Methanal and Ethanal	(d) Methane								
5.	Acetone reacts with HCN to form cyano									
	(a) Electrophilic addition	(b) Electrophilic substitution								
_	(c) Nucleophilic addition	(d) Nuclearphilic substitution								
6.	Which of the following compounds will									
	(a) Acetaldehyde	(b) Acetone								
7.	(c) Butanone	(d) 3-Pentanone								
/.	(a) Linear	nds gives acetal; the geometry of acetal is: (b) Trigonal								
	c) Tetrahedral	(d) Planar								
8.	Which of the following compound will r									
0.	(a) Acetone	(b) Acetic acid								
	(c) Methyl ethyl ketone	(d) Acetaldehyde								
9.	Which of the reagents will react with K	` '								
٠.	(a) Sodium nitroprusside	(b) Tollen's reagent								
	(c) Fehling's reagent	(d) Benedict's reagent								
10.	The Nucleophilic addition reactions of o									
	(a) Acids	(b) Bases								
	(c) Both a and b	(d) None of these								
11.	Acetaldehyde is distinguished from oth									
	(a) Iodoform test	(b) Tollen's reagent								
	(c) Silver mirror test	(d) all of these								
12.	Which is used in the preparation of thro	oat lozengés:								
	(a) Formaldehyde	(b) Acetaldehyde								
	(c) Menthol	(d) Menthone								
13.	Which is used as an antiseptic inhalant									
	(a) Formaldehyde	(b) Acetaldehyde								
	(c) Formic acid	(d) Acetic acid								
14.	Aldehyde forms acetal when they comb									
	(a) Hydrogen Iodide	(b) Hydrogen gas								
	(c) Hydrogen Chloride	(d) Sodium Hydroxide								
15.	Which of the following groups does not									
	(a) Aldehyde	(b) Alcohol								
	(c) Carboxylic acid	(d) Ketone								

16 .	Isopropyl alcohol on oxidation forms:	
	(a) Acetone	(b) Ether
	(c) Ethylene	(d) Acetaldehyde
17 .	Which of the following reactions is used fo	r detecting the presence of carbonyl group?
	(a) Reaction with hydroxylamine	(b) Ammonical cuprous oxide
	(c) Ammonical silver bromide	(d) Ammonical silver nitrate
18.	Propyne on hydrolysis in presence of H ₂ SO	` ,
	(a) Acetaldehyde	(b) Acetone
	(c) Formaldehyde	(d) None
19.	On heating acetaldehyde with Ammonical	` ,
	(a) CH₃OH	(b) Silver acetate
	(c) HCHO	(d) Silver mirror
20.	At room temperature formaldehyde is:	(2) 55.
	(a) Gas	(b) Liquid
	(c) Solid	(d) Rubber like solid
21.		of Propionaldehyde with amalgamated Zinc
	and concentrated HCl is:	or representation, as many amangamaton inc
	(a) Propanol	(b) Propane
	(c) Propane	(d) All
22.		onation reaction in presence of sodium or
		g alcohol and acid. The reaction is known as:
	(a) Wurtz reaction	(b) Cannizzaro reaction
	(c) Friedel-Craft reaction	(d) None
23.	Which of the following is used in formation	()
25.	(a) Chloral hydrate	(b) Ethanol Tetramer
	(c) Ethanol Trimer	(d) both a and c
24.		sed over heated copper, the major product
	obtained is:	sea over heaten copper, the major product
	(a) Propane	(b) Propylene
	(c) Acetaldehyde	(d) Acetone
25.	A Nucleophilic regent will readily attack or	• •
25.	(a) Ethylene	(b) Ethanal
	(c) Ethanol	(d) Ethylamine
26.	Which of the following does not react with	• , ,
20.	(a) Ethanol	(b) Ethanal
	(c) Acetone	(d) Acetophenone
27.	Self condensation of Acetaldehyde in the p	` '
47 .	(a) An acetal	(b) An aldol
	(c) Paraldehyde	(d) Acetone
28.	Which of the following does not give brick	
20.	(a) Formalin	(b) Acetaldehyde
	(c) D-Glucose	(d) Acetone
29.	Formalin is 40% aqueous solution of:	(u) Acetone
29.		(h) Formaldohyda
	(a) Furfural	(b) Formaldehyde
20	(c) Formic acid	(d) Methyl iodide
30.	Acetone is oxidized with:	(b) Fabling colution
	(a) Tollen's reagent	(b) Fehling solution
24	(c) Acidified dichromate solution	(d) Benedicts solution
31.	Concentrated Sodium hydroxide and Benza	
	(a) Benzyl alcohol	(b) Hydrobenzamide
	(c) Cinnamic acid	(d) Benzophenone

32.	Wolf-	Kishner reduction	on is u	sed for the	reduction of	of.			
	` '	tro compounds				(b)	Carboxylic acid	ds	
		rbonyl compounds				(d)	Olefins		
33.		CHO and (CH ₃) ₂ C	O can	be disting	uished by te	_			
		enyl hydrazine				(b)	Hydroxylamine		
		hling solution				(d)	Sodium bisulp	hate	
34.		menson's reduct	ion of	Ketones is	carried out				
	` '	with Pd catalyst				(b)	KOH+N ₂ H ₄		
		AlH4 in water		_		(d)	Zn-Hg with co		
35.		n of the followi	ng org	janic comp	ounds exhi	bits po	sitive Fehling	test as	well as
		orm test:							
	` '	ethanal				(b)	Ethanol		
		opanone				(d)	Ethanal		
36.		n of the followi		ctants will	render Tei	rtiary b	outyl alcohol o	n react	ing with
		yl magnesium io	dide?						
	(a) HC					(b)	CH₃CHO		
		I₃COCH₃				(d)	CO ₂		
37.	-	phite adduct is:							
		llow ppt				(b)	Crystalline whi	te ppt	
		eenish Crystalline				(d)	Red solid		
38.		UPAC name of C		CH (CH3)2 is	5:				
	` '	Methylisopropy ke				(b)	3-Methyl-2-bu		
	(c) Iso	opropylmethyl keto	one			(d)	2- Methyl-2 bu	ıtanone	
39.	Whic	h of the followin	ng read	ents will r	eact with b	oth Ald	ehvdes and Ke	etones?	
	(a)	Fehling's reage		,		(b)	Tollen's reage		
	(c)	Grignard's reag				(d)	Benedicts read		
40.		n's regent is:				(-)		,	
	(a)	Alkaline solution	n conta	ining Potassi	ium tartarate				
	(b)	Alkaline solution		-					
	(c)	Ammonical AgN		3					
	(d)	Ammonical Cu ₂							
41.		h compounds w		give Iodof	orm test on	treatm	ent with I ₂ /Na	aOH?	
	(a)	Acetaldehyde				(b)	Acetone		
	(c)	Butanone				(d)	3 – Pentanone	<u> </u>	
42.		carbon atom of t	he car	bonyl grou	p is:	` ,			
	(a)	sp hybridized				(b)	sp ² hybridized		
	(c)	sp ³ hybridized				(d)	None of these		
43.		nes are prepare	d by th	e oxidatio	n of:	. ,			
	(a)	Primary alcohol	S			(b)	Secondary alco	ohols	
	(c)	Tetiary alcohols	;			(d)	None		
44.	Aceto	one reacts with	HCN to	form cyar	ohydrin. It	is an e	xample of:		
	(a)	Electrophilic add	dition			(b)	Electrophilic su	ubstation	
	(c)	Nucleophilic add	dition			(d)	Nucleophlic su	bstitution	1
45 .	Catal	yst used for the	labora	atory prepa	aration of fo	rmalde	hyde is:		
	(a)	ZnO	(b)	Al_2O_3	(c)	Platiniz	zed Asbestos	(d)	None
46.	Hybr	idization of carb	on in o	carbonyl gr			(FSD 2010, 0	GRW 201	.1)
	(a)	sp ³	(b)	sp ²	(c)	dsp ²	- ,	(d)	sp
47.		izzaro's reaction		•	• •		13, 14, LHR 12		
	(a)	Formaldehyde		•	(b)	-	dehyde	-	-
	(c)	Benzaldehyde			(d)		hyl acetaldehyd	е	

48. Ketones are always reduced to: (RWP 2008)

(a) Primary alcohol(b) Secondary alcohol(c) Tertiary alcohol(d) None of these

(c) Tertiary alcohol (d) None of these

49. Aldol product on heating undergoes: (RWP 2009)

(a) Decomposition(b) Dehydration(c) Rearrangement(d) None of these

50. Acidified oxidizing agent for the laboratory preparation of acetaldehyde is: (RWP 2010)

(a) $K_2Cr_2O_7+H_2O$ (b) $Na_2Cr_2O_7+H_2SO_4$ (c) $K_2Cr_2O_7+H_2S$ (d) $Na_2Cr_2O_7+NO_2$

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
a	d	С	b	С	d	С	d	а	C
11	12	13	14	15	16	17	18	19	20
a	a	b	С	С	a	а	b	d	а
21	22	23	24	25	26	27	28	29	30
b	b	d	d	b	а	b	d	b	С
31	32	33	34	35	36	37	38	39	40
а	С	С	d	d	С	b	b	С	С
41	42	43	44	45	46	47	48	49	50
d	b	b	С	С	b	b	b	b	b

CARBOXYLIC ACIDS

1.	Which acid of the following is not a fatty a	cid?	,
	(a) Propanoic acid		Phthalic acid
	(c) Butanoic acid	(d)	Acetic acid
2.	Which reagent is used to reduce a carboxylic	groi	in to an alcohol?
	(a) H ₂ /Ni	_	H ₂ /Pt
	(c) H ₂ /Pd		LiAlH ₄
3.	Sodium acetate and Acetyl chloride react		
	(a) Acetic acid	_	Acetone
	(c) Acetic anhydride		None
4.	Acetic acid and formic acid, both exist as		
	(a) Hydrogen bonding		Polymerization
	(c) Condensation		Distillation
5.	Nature of Glycine amino acid is:	(-)	
	(a) Neutral	(b)	Acidic
	(c) Basic		None
6.	Acetic acid is obtained when	(-)	
	(a) CH₃OH is oxidized	(b)	Calcium acetate is distilled
	(c) Ethanol is oxidized	` '	Ammonium carbonate is heated
7.	Which one of the following products is not		
	(a) CH₃COCl		HCI
	(c) POCl₃		CH₃Cl
8.	Which of following derivative cannot be p		
	(a) Acetamide		Acetyl chloride
	(c) Acetic anhydride		Ethyl acetate
9.	Acetamide is prepared by:	(-)	,
	(a) Heating ammonium acetate	(b)	Heating methyl cyanide
	(c) Hydrazine	(d)	Mixture of NH ₄ Cl and acetic acid
10.	Which Ester is used for the flavor of Banar		
	(a) Benzyl acetate	(b)	Amyl acetate
	(c) Isobutyl formate	(d)	Ethyl butyrate
11.	Freezing point of acetic acid is:	` '	, ,
	(a) -17°C	(b)	17°C
	(c) -118°C	(d)	Room temperature
12.	Glacial acetic acid is miscible in all propor		
	(a) Water		Ether
	(c) Alcohol		All of these
13.	The carbon atom of a carbonyl group is:	(-)	
	(a) Unhybridized	(b)	sp hybridized
	(c) sp ² hybridized	(d)	sp ³ hybridized
14.	The boiling points of the Carboxylic acid a	` ,	. ,
	(a) High		Low
	(c) Extremely low		Extremely high
15.	Carboxylic acids on reaction with Lithium		
	(a) Aldehyde	-	Alkene
	(c) Alcohol	(d)	Ester
16.	Which of following is commonly known as	` '	
	(a) Formic acid		Butanoic acid
	(c) Formaldehyde		
	· · · · · · · · · · · · · · · · · · ·		

17.	when Ethyl alcohol is oxidized with K ₂	Cr ₂ O ₇ and	i allute H ₂ SO ₄ ,	wnich of	tne rollowing
	is produced:	41.5			
	(a) Formaldehyde	` ,	Acetic acid		
	(c) Butanoic acid	(d)	Formic acid		
18.	Zwitterion is also called:	4.5			
	(a) Dipolar ion	(b)	Internal Salt	(c)	both a and b
	(d) Non polar ion				
19.	Amino acids can be synthesized by rea				
	(a) Ammonia	` ,	Urea	(c)	Ammonium
	Chloride	(d)	Formaldehyde		
20.	Reaction of acids with alcohols is know	wn as:			
	(a) Esterification	(b)	•	(c)	
	Neutralization	(d)	None		
21.	Toluene can be oxidized to Benzoic ac	id by:			
	(a) KMnO4 (acidic medium)	(b)	K ₂ Cr ₂ O ₇ (acidic r	nedium)	
	(c) Both a and b		None		
22.	When two moles of acetic acid are hea	ated with	P2O5 the produ	uct form	ed is:
	(a) 2 moles of ethyl alcohol	(b)	Two moles of Ac	cetone	
	(c) Acetic anhydride	(d)	Ethyl acetate est	ter	
23.	Of the following four reactions, formic				nich respect?
	(a) Replacement of hydrogen by sodium	(b)	Formation of est	er with al	cohol
	(c) Reduction of Fehling solution	(d)	Blue litmus reac	tion	
24.	Glacial Acetic acid at 17°C is:	• •			
	(a) Colourless liquid	(b)	Ice like solid		
	(c) Waxy solid	` ,	A gas		
25.	Weakest acid among the followings is		J		
	(a) Acetic acid		Phenol		
	(c) Water	` ,	Acetylene		
26.	Ethyl alcohol reacts with acetyl chloric	` ,	•		
	(a) Ethyl chloride		Acetic acid		
	(c) Methyleacetate	` ,	Ethyl acetate		
27.	Which of the following is the stronges		,		
	(a) CF₃COOH		CBr₃COOH		
	(c) CH ₃ COOH	` ,	CCl₃COOH		
28.	HCOOH reacts with conc. H ₂ SO ₄ to pro	` ,	00.500011		
	(a) CO+H ₂ O		CO ₂ +H ₂		
	(c) HCHO	` ,	None		
29.	Hydrolysis of an ester gives a carbox			e's elect	rolysis vields
	ethane, the ester is	tyne deld	William Oil Roll	, c 5 c.cc.	01,010 ,10140
	(a) Ethyl methonoate	(h)	Methyl ethanoat	e e	
	(c) Ethyl acetate ester		None		
30.	Carboxylic acids are more acidic than	` ,		ause of:	
J U .	(a) Intermolecular hydrogen bonding	piloliol a	ila alconor becc		
	(b) Formation of Dimers				
	(c) Highly acidic hydrogen				
	(d) Resonance stabilization of their conjuga	ata haca ((Carboxylate ion)		
31.	Organic compounds having fruity sme		carboxylate ion)		
31.	· · · · · · · · · · · · · · · · · · ·		Alcohols		
	(a) Carboxylic acids	(b)			
22	(c) Ethers	(d)	Esters		
32.	The solution of the acid used for seas	_			
	(a) Formic acid	(b)		لم	
22	(c) Benzoic acid	(d)	Butanoic aci	a	
33.	Which of the following is not a fatty a				
	(a) Propanoic acid	(b)			
	(c) Phthalic acid	(d)	Butanoic aci	а	

34.	Aceti	c acid was f	irst isolate	ed from:						
	(a)	Butter	(b)	vinegar	(c)	Milk		(d)	Red	
ant										
35.	Aceti	c acid was f	irst isolate	ed from:						
	(a)	Butter	(b)	Vinegar	(c)	Milk	(d)	Red ar	nt	
36.	The n	nolecular m	ass of pro	tein is:						
	(a)	Less than	10,000		(b)	Greater than 10,000				
	(c)	Equal to 10	0,000		(d)	Equal to 9,00	00			
37.		o acids are		oy:	. ,					
	(a)	Williamson	's synthesis	•	(b)	Strecker's sy	nthesis			
	(c)	Wurtz's sy			(d)	Perkin's reac				
38.		molecular n		tein is:	()					
		ss than 10,00			(b)	Greater than	10,000			
		ual to 10,000			(d)	Equal to 9000				
39.				tained by el		f boiling poin		d is:		
		2011)				31				
	(a) 30				(b)	60				
	(c) 12				(d)	180				
40.		h compound	d is polypr	otic acid?	()					
		l₃COOH	. ,.		(b)	C ₆ H ₄ (OH)CO	OH			
		OOH) ₂			(d)	C ₆ H ₅ OH ′				
41.	` , `	,	e of zwitte	rions is also						
	•	ouble salt			(b)	Health salt				
	` ,	ternal salt			(d)	External salt				
42.	` '	lavor of am	vl acetate	is:	(-)					
	(a) Or		,		(b)	Apricot				
	` ,	ne apple			(d)	Banana				
43.		c acid is ma	nufacture	d bv:	(-)	(LHR 14, 0	GRW 14.:	15. RWP 1	10)	
		stillation			(b)	Fermentation			,	
	` '	onolysis			(d)	Esterification				
44.	` '	•	that does	not have car						
		rmic acid			(b)	Picric acid				
		rmaldehyde			(d)	Acetone				
45.	` '	sine was firs	st isolated	from.	(-)	, 100101.10		(RWP 20	108)	
	(a) Su				(b)	Cheese		(,,,,	
	(c) Bu				(d)	Milk				
46.	` '	halic acid is	a:		(4)			(RWP	20091	
		onocarboxylic			(b)	Dicarboxylic	acid	(1233)		
		icarboxylic ac			(d)	None of thes				
47.	` ,	,		rt carboxylic	` ,	ctly to alkane		(RWP	2008)	
	(a) HI	_		i c cai boxy iic	(b)	NaBH ₄		(1233)		
	(c) Li				(d)	H ₂ /Ni				
48.	` ,		ed in the m	nanufacture	` ,	•		(MTN 2	2015)	
		rmic acid		iana accare	(b)	Oxalic acid		(-010,	
	` '	arbonic acid			(d)	Acetic acid				
49.	` '		which can	not he synth	` ,	our body are	.د	(MTN 2	20081	
⊤ ∂.	(a) 5	io acius	winch call	not be synth	(b)	10	J.	(141114.)	-000 <i>)</i>	
	(c) 15				(d)	20				
50.			following	is an uneati		boxylic acid?	,	(MTN 2	ומחחכ	
JU.		alonic acid	Lionowing	is an unsatt	(b)	Oxalic acid		(141114.7	-005)	
	` ,	accinic acid			(d)	Maleic acid				
	(c) Su	icciriic aciu			(u)	ויומוכונ מנוע				

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
b	d	С	а	а	С	d	a	a	b
11	12	13	14	15	16	17	18	19	20
b	d	С	а	С	d	b	С	a	а
21	22	23	24	25	26	27	28	29	30
С	С	С	b	С	d	а	а	С	d
31	32	33	34	35	36	37	38	39	40
d	b	С	b	b	b	b	b	b	С
41	42	43	44	45	46	47	48	49	50
С	d	b	b	b	b	а	d	b	d

MACROMOLECULES

1.	Which of these polymers is a synthetic po	lyme	er:
	(a) Aminal fat	(b)	Starch
	(c) Cellulose	(d)	Polyester
2.	Which one of the following engumes brings o	hout	t the hydnelygic of fater
4.	Which one of the following enzymes brings a		· · · · · · · · · · · · · · · · · · ·
	(a) Urease	٠,) Maltase
2	(c) Zymase	٠,) Lipase
3.	To which class of compounds cholesterol		_
	(a) Steroids		o) Phospholipids
	(c) Vitamins	(u	l) Triglycerides
4.	Which of the following is an ester:	/h) Ctorch
	(a) Soap	•)) Starch
_	(c) PVC		l) Triglyceride
5.	Which one of the following is an inorganic		
	(a) Graphite		o) Rubber
c	(c) DNA		l) Protein
6.	The linear sequence of amino acids in a pr		
	(a) Primary Structure		o) Secondary Structure
7	(c) Tertiary Structure		l) Quaternary structure
7.	In which of these processes are small orga		
	(a) The cracking of petroleum fractions	•)) The fractional distillation of crude oil
0	(c) Formation of Polyethene	(u	I) The hydrolysis of proteins
8.	Which of these polymers is synthetic:	(h) Ctarch
	(a) Animal fat	•	o) Starch I) Polyester
9.	(c) Cellulose Which Carbohydrate can be used for silve	•	, ,
J .	(a) Glucose	_	o) Fructose
	(c) Maltose	•	i) all
10.	Monosaccharide contains carbon ato	•	•
10.	(a) 3 to 6		o) 3 to 7
	(c) 6-7	•	1) 7-10
11.	Which of the following is not obtained by	•	•
	(a) Polyester		o) Nylon
	(c) Polystyrene	•	l) None
12.	Which of the following is a Polyamide:	()	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(a) Polyester	(h	o) Orlon
	(c) Polystyrene	•	i) Nylon
13.	Orlon is polymer of:	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(a) T.F.E	(h	o) Acrylonitrile
	(c) Ethanoic acid	•	l) Benzene
14.	The raw material used to from Nylon is	(-	.,,
	(a) Adipic acid	(b)	Butadiene
	(c) Isoprene		Ethylene
15 .	The example of Copolymer:	(4)	zanyione
	(a) Polyester	(b)	Polystyrene
	(c) Polyethene		None
16.	Poly vinyl acetate is used as:	(-)	
	(a) Explosive material	(h)	Adhesive material
	(c) Rubber	` '	Filler
17 .	Polyamide resins are formed by condensa		
	(a) Carboxylic acid		b) Alcohol
	(c) Aldehydes		d) Dicarboxylic acid
	· · · · · · · · · · · · · · · · · · ·	٠,-	,

18.	The Epoxy resin is made by condensation	of Epich	lorohydrin with:
	(a) Diphenylol propane	(b)	Phenyl propane
	(c) Phenyl acetate	(d)	Dicarboxylic acid
19.	The table sugar is:	()	,
	(a) Glucose	(b)	Sucrose
	(c) Maltose	(d)	Lactose
20.	Raffinose is an example of :	()	
	(a) Mono saccharide	(b)	Disaccharide
	(c) Trisaccharide	(d)	None
21.	The example of compound protein is:	. ,	
	(a) Phosphoprotein	(b)	Peptones
	(c) Albumin	(d)	Globulins
22.	The optimum PH of salivary amylase is fro	m 6.4 to	o:
	(a) 6.8	(b)	6.9
	(c) 7.0	(d)	None
23.	The reagent which forms crystalline glu	ıcosazor	ne derivative when treated with
	glucose is:		
	(a) Fehling solution	(b)	Phenyl hydrazine
	(c) Benedict solution	(d)	Hydroxyl amine
24.	Ascorbic acid is a chemical name of:		
	(a) Vitamin D	(b)	Vitamin A
	(c) Vitamin C	(d)	Vitamin B ₆
25.	The main structural feature of proteins is:		
	(a) An ester linkage	(b)	An ether linkage
	(c) The peptide linkage	(d)	All
26.	The fiber which is made from acrylonitrile		
	(a) PVC	(b)	Rayon fiber
	(c) Acrylic resins	(d)	Polyester fiber
27.	The disaccharide present in milk is:		
	(a) Sucrose	(b)	Maltose
	(c) Lactose	(d)	Cellobiose
28.	On hydrolysis of starch, we finally get:	4.5	
	(a) Glucose	(b)	Fructose
	(c) Both a and b	(d)	Sucrose
29.	Enzymes in the living systems:	(1.)	B
	(a) Provide energy	(b)	Provide immunity
20	(c) Transport oxygen	(d)	Catalyze biochemical processes
30.	Bakelite is obtained from phenol by reacti	_	
	(a) Acetaldehyde	(b)	Acetal Chlorobenzene
21	(c) Formaldehyde	(d)	
31.	Enzyme used for the treatment of blood co (a) Cellulose	(b)	Urease
	(c) L-asparaginase	(b)	lactic dehydrogenase
32.	Which of the following is not present in no		
32.	(a) Guanine	(b)	Cytosine
	(c) Adenine	(b)	Tyrosine
33.	Which of the following has magnesium in		
<i>J</i> J.	(a) Carbonic anhydrase	(b)	Haemocyanin
	(c) Chlorophyll	(b)	Vitamin B ₁₂
34.	The number of amino acids found in prote	` '	
J-T.	(a) 20		b) 10
	(c) 5		d) 14
35.	Which of the following is an example of K		
	(a) Glucose		o) Raffinose
	(c) Maltose		d) Fructose
		()	,

36.	The g	roup linkage	present i	in Carb	ohydra	ites:					
	(a) Pe	eptide linkage					(b)	Ester	linkage		
	(c) Gl	ycosidic linkage)				(d)	Dieste	er linkage		
37.	Teflo	n, styrene and	d Neopre	ne are	all:		. ,		_		
	(a) Co	polymers					(b)	Cond	ensation p	olymer	'S
	(c) H	omopolymers					(d)	Mono	mers	-	
38.	Whic	h of the follow	ving is fu	illy fluo	orinate	d polyn	ner?				
	(a) No	eoprene	_	-			(b)	Teflo	n		
	(c) Th	niokol					(d)	PVC			
39.	The d	legree of unsa	aturation	of a fa	at or an	oil is c	hecked	by its:			
	(a) Hy	drogenation nu	ımber				(b)	Iodin	Iodine number		
	(c) Sa	aponification nu	mber				(d)	Octar	ne number	-	
40.	Star	ch is a polyme	er of:				. ,				
	(a)	Fructose					(b)	α -D-0	Glucose		
	(c)	Sucrose					(d)	Lacto	se		
41.		ch one of the f	ollowing	enzyn	nes brii	ngs abo		ydrolys	is of fats	?	
	(a)	Urease	_	•			(b)	Malta			
	(c)	Zymase					(d)	Lipas	е		
42.		ch of these po	lymers is	an ad	dition p	oolyme		•			
	(a)	Nylon-6,6	•		•	-	(b)	Polys	tyrene		
	(c)	Terylene					(d)		, resin		
43.		y resins are f	undamer	ntally:			` '	•			
	(a)	Polyamide		-			(b)	Polye	thers		
	(c)	Polyesters					(d)	Polyv			
44.		ch one of the 1	ollowing	acid is	s used t	to prep		hetic fil	ber?		
	(a) Carbonic acid						(b)		ic acid		
	(c)	Acetic acid					(d)	Butyr	ic acid		
45 .		ch statement a	about glu	icose a	nd suc	rose is					
	(a)	Both are solu					(b)		occur natı	ırally	
	(c)	Both are car	bohydrate	es					Both are disaccharides		5
46.	The f	fiber which is	made fro	om acr	ylonitri	le as m		is:			
	(a)	PVC	(b)	Rayo	n fiber	(c)	Acryli	c Fiber	(d)	polye	ster
fiber				•			•				
47.	Whic	ch of these po	lymers is	an ad	dition p	oolyme	r?				
	(a)	Polystyrene	(b)	Nylor	า-6,6 ๋	(c)	Polye	ster	(d)	Epoxy	resin
48.	Enzy	me used for t	he treatr	nent o	f blood	cancer	in child	ren is:			
	(a)	Cellulose					(b)	Ureas	se .		
	(c)	L-Asparginas	se				(d)	Lactio	dehydrog	genase	
49.		n-6,6 is obtai		eating	hexa m	ethyle					2010)
	(a)	Adipic acid	-			-	(b)	Acetic		•	-
	(c)	Vinyl chlorid	е				(d)	Acryli	c acid		
50.		merization of	acrylonit	trile giv	ve:		,	•		(FSD	2011)
	(a)	PVC					(b)	Rayo	n Fiber		
	(c)	Acrylic fiber					(d)	Polye	ster fiber		
	. ,	•						•			

1	2	3	4	5	6	7	8	9	10
d	d	a	d	a	a	С	d	a	b
11	12	13	14	15	16	17	18	19	20
С	d	b	a	a	b	d	a	b	С
21	22	23	24	25	26	27	28	29	30
а	b	b	С	С	С	С	a	d	С
31	32	33	34	35	36	37	38	39	40
С	d	С	b	d	С	С	b	b	b
41	42	43	44	45	46	47	48	49	50
d	b	b	С	d	С	a	С	a	С

COMMON CHEMICAL INDUSTRIES IN PAKISTAN

	<u> </u>			
1.	The percentage of nitrogen in NH ₃ is:	<i>(</i> 1.5	600/	
	(a) 46%	` '	60%	
	(c) 82%	(a)	100%	
2.	Potassium fertilizers are useful for:			
	(a) Tobacco		Coffee	
	(c) Potato		all of these	
3.	Which one of the following raw materials is no			nanufacture:
	(a) Lime stone		Gypsum	
_	(c) Blast furnace slag	(d)	Lead	
4.	White water is:			
	(a) Hard water			
	(b) Water obtained from a crystal by heating		t Carreduiniau talala	
	(c) Water which is obtained from pulp, through scre			
5.	(d) Water which is removed from amino acids when The % of Nitrogen in Ammonium Nitrate is:	uiey	/ ITOITI pepude bond	(GRW 2009)
J .	(a) 46%	(h)	82%	(GRW 2009)
	(c) 33%		16%	
6.	Which is not a calcareous material?	(u)	(SGD 14, MTN 11,1	3. LHR 14.15)
٠.	(a) lime	(b)	clay	5, Link 1 1,15,
	(c) marble	٠,	marine shell	
7.	The nitrogenous fertilizer easily taken up by p			(LHR 2011)
	(a) Urea		Ammonium nitrate	
	(c) Liquid ammonia	(d)	Ammonia solution	
8.	Ammonium nitrate fertilizer is not used for wh	ich	crops?	(LHR 2010)
	(a) Cotton	(b)	Wheat	
	(c) Sugarcane		Paddy rice	
9.	Point out raw material which is most suitable			rea:
	(a) CO_2 , N_2 , H_2		N_2 , H_2 , CO	
	(c) CH ₄ , N ₂ , H ₂		H_2 , N_2	
10.	Which one of the following fertilizers has max			lants in Pakistan:
	(a) Urea	٠,	Ammonia	
11.	(c) Ammonium phosphate	(a)	Ammonium nitrate	N FCD CWI 1F\
11.	Phosphorous helps the growth of in early stage: (a) Root	(h)	Leave	N, FSD, SWL 15)
	(c) Stem	٠,	Seed	
12.	Which of the following nitrogen fertilizer conta			
14.	(a) NaNO ₃		KNO ₃	
	(c) NH ₄ NO ₃		Urea	
13.	Urea contains about	(4)	0.00	
	(a) 48% Nitrogen	(b)	46% Nitrogen	
	(c) 44% Nitrogen		42% Nitrogen	
14.	Potassium nitrate is prepared by direct reaction			chloride and
	(a) Nitric acid		Nitrosyl chloride	
	(c) Sodium nitrate	(d)	Nitrate ions	
		-		

15 .	The total production of urea fe	ertilizer in Pakistan i	s:	
	(a) 56,20,10 metric tons /annum	(b)	56,25,100 metric tons/	annum
	(c) 56, 23,100 metric tons/annum	(d)	56, 30,100 metric tons	/annum
16.	For Chemical pulping, the prin	cipal methods used	are:	
	(a) Five	(b)	Four	
	(c) Three	(d)	Two	
17 .	During setting of cement,	Tricalcium silicate	and tri-calcium alun	ninate are get
	hydrolyzed to produce calciun	n hydroxide and		
	(a) Ca(OH) ₂ .2H ₂ O	(b)	CaCO ₃ .2H ₂ O	
	(c) Al(OH)₃	(d)	CaCO ₂	
18.	For manufacture of Portland of			
	(a) Lime and Silica	` ,	Alumina and Magnesia	
	(c) Silica and FeO		Clay and Shale	
19.	In cement manufacture, 75%		_	
	(a) 62% Lime	• •	60% Lime	
	(c) 75% Lime		None	
20.	The natural fertilizer is called			
	(a) Manure	` ,	Urea	
	(c) Super phosphate	. ,	Ammonium sulphate	
21.	Which of the following eleme			(RWP 2009)
		e (c)	Mg	(d) Mo
22.	Macronutrients are required f	or an acre of land in	quantity ranging from	n:
	(SGD 14, RWP 10)	(6)	2 2001/~	
	(a) 2-200Kg	` ,	3-200Kg	
	(c) 4-200Kg	` ,	5-200Kg	
23.	Calendar stock is the stage of			
	(a) Paper is stored		Thickness is reduced	
34	(c) water is removed	` ,	Stock is reduced to 1%	
24.	Which non-woody raw materi	· · · · · · · · · · · · · · · · · · ·		(d) Donlar
25.	• • • • • • • • • • • • • • • • • • • •	Rice/wheat straw	(c) Eucalyptus	(d) Poplar
25.	The hottest zone in rotary kili		Dro hosting	(MTN 2008)
	(a) Drying (c) Burning		Pre-heating Decomposition	
26.	Which sequence of steps is co	. ,	•	
20.	(a) Mixing, heating, grinding,		acture or cement:	
	(b) Crushing, heating, mixing	_		
	(c) Crushing, heating, mixing			
	(d) Crushing, grinding, mixing			
27.	It is not used in paper and pu			(MTN 2009)
-/ .) Poplar	(d) He gas
28.	A manure is:	Socion stance (c)	, i opiai	(MTN 2009)
	(a) An organic compound	(h)) An inorganic compound	•
	(c) A mixture of organic and inorg) A mixture of inorganic	
29.	The fertilizer that contains la			compounds
	(a) Liquid nitrogen	_) Urea	
	(c) Liquid ammonia		Ammonium nitrate	
30.	Argillaceous material in the fo	. ,	7 dilliloriidili fiiddee	(MTN 2011)
.	(a) Lime	_	Clay	(11111 2011)
	(c) Marble		Marine shell	
31.	Which substance in cement h	• ,		(BWP 2008)
	(a) Silica (SiO ₂)		Lime (CaO)	(2111 2000)
	(c) Iron Oxide (Fe ₂ O ₃)		Alumina (Al ₂ O ₃)	
	(-) 2. 3 3 3 (1 3233)	(α)	(

32.	Which one is an organic fertilizer:	(BWP 2009)
	(a) Manure	(b) Ammonium nitrate
	(c) Urea	(d) both a & c
33.	Which one is a micronutrient?	(BWP 2010)
	(a) Boron	(b) Nitrogen
	(c) Phosphorous	(d) Potassium
34.	The fertilizer which contains 46% nitroger	n is: (DGK 2009)
	(a) Urea	(b) Ammonia
	(c) Ammonium nitrate	(d) none of these
35.	Argillaceous material used for the manufac	cture of cement provides
	(a) Basic components	(b) Amphoteric compounds
	(c) Acidic components	(d) both acidic and basic component
36.	Diammonium Phosphate contains:	(BWP 2012)
	(a) 18% Nitrogen	(b) 48% P ₂ O ₅
	(c) 88% plant nutrients	(d) 10% Nitrogen
37.	The % of lime (CaO) in Portland cement is	: (SGD 2012)
	(a) 1.0	(b) 2.5
	(c) 62.0	(d) 60.0
38.	The % of gypsum in Portland cement is:	(LHR 2012)
	(a) 4-5%	(b) 9-4%
	(c) 2-3%	(d) 1-2%

1	2	3	4	5	6	7	8	9	10
С	d	d	С	С	b	С	d	a	a
11	12	13	14	15	16	17	18	19	20
а	d	b	С	d	С	С	a	a	a
21	22	23	24	25	26	27	28	29	30
С	d	b	b	С	d	d	a	С	b
31	32	33	34	35	36	37	38		
b	d	а	a	С	b	С	a		

ENVIRONMENTAL CHEMISTRY

1.	Di	sinfection of water by chlorine is	done by the	e production of:	(LHR 2005)
	(a)	NH ₂ Cl	(b)	NCl ₃	
	(c)	HOCI	(d)	NHCl ₂	
2.	Fo	ollowing is better to disinfect water:	;		(LHR 2011)
		Cl ₂	(b)	02	,
	(c)			KMnO ₄	
3.		which layer of the atmosphere is	` ,		
		Thermosphere	•	mesosphere	
		Stratosphere	` ,	Troposphere	
4.		hich one of the following is not a			
		CO ₂	•	NO ₂	
		CO		SO ₂	
5.		e smog which has high contents			
		Reducing smog		Oxidizing smog	
		Natural smog		Neutral smog	
6.		hich one of the following disease	` ,		ticides:
		Sleeping sickness		Rickets	
		Malaria	` ,	Yellow fever	
7.		O.D of water can be determined	` ,		
		Cr ₂ O ₃ ⁻²	-	CrO ₄ -	
		Cr ⁺³	` ,	Cr ₂ O ₇ -2	
8.		acking of Polyethene at high ten	` ,		
•		Allotropes		Isomorphs	
	` '	Polymers	` ,	Monomers	
9.		e residual ash after incineration	` ,		sed off in a landfill
٠.		hich is lined with:	. Or maasen	ai waste is aispo.	(LHR 2011)
		Portland cement	(h)	Clay and plastic	(21111 2022)
		Stone-ware		Methyl silicone	
10.		e temperature in the non-rota	` ,	•	ration of industria
10.		zardous waste process has a ran			(DGK 09, GRW 08)
		950 to 1300 ℃		900 to 1000℃	(DGR 05, GRW 00)
		250 to 500 ℃	` ,	500 to 1000 ℃	
11.		e thickness of atmosphere is:	(u)	300 to 300 C	(BWP 2015)
11.		1500 Km	(b)	1000 Km	(BWF 2013)
		500 Km	` ,	1000 Km	
12.		ne fresh water being used for don	` ,		(ECD_10_DWD_00)
12.					(FSD-10, BWP-09)
		8%		23%	
12		69% e normal amount of overhead oz		100%	00 10 DCV 00\
13.		200 5			08,10, DGK-08)
	(a)		` ,	350 Du	
4.4		400 Du	` ,	450 Du	
14.		e normal amount of overhead O			
	(a)		(b)		
		350 D.U		400 D.U	
15.		e mean residence time of metha			
		3-6 years	` ,	3-5 years	
		3-7 years		3-8 years	
16.		notochemical smog consists of hi	_		
		Oxidants	` ,	Reductants	
	(C)	Acids	(d)	Bases	

17 .	Th	e boiling point of Ozone is very:		
	(a)	High		Low
	(c)			-10 ℃
18.	In	clean water, molecular oxygen ranges f		
	(a)	• • •		4-9 ppm
		4-8 ppm	(d)	4-10 ppm
19.		e recycling of plastic involves:		
		Re-processing		Depolymerization
	` '	Transformation	(d)	
20.		hich of following is three times lighter t		
	` '	Carbon monoxide	` '	Carbon dioxide
21	` '	Both a and b	` '	None
21.		mosphere of big/metropolitan cities is p Automobile exhausts		Pesticide residue
	` '	Household waste	` '	Radio-active fall out
22	` '		` '	
22.		iief air pollutant which is likely to deplet Sulphur dioxide		Carbon monoxide
	` '	•	` '	
22	` '	Carbon dioxide	٠,	NO _X + CFC's
23.		ollutant of automobile exhausts that affo sease is:	ects	nervous system and produces mental
		Mercury	(h)	Lead
		Nitrogen oxide		Sulphur oxide
24.		on in the fe and NO ₂ produce air pollution in the fe		•
24.		Smog		Acidic Rain
		Both a and b	` '	None
25.		rbon monoxide is a pollutant as it:	(u)	Hone
		Inactivates nerves	(b)	Inhibits glycolysis
	` '	Combines with oxygen		Combines with hemoglobin
26.		id rains are produced by:	()	
		Excess NO ₂ and SO ₂ from burning fossil fuel	ls	
		Excess production of NH ₃ by industry and co		as
	(c)	Excess release of carbon monoxide by incor	nplet	e combustion
	(d)	Excess formation of CO ₂ by combustion and	anin	nal respiration
27 .	At	mospheric pollutant is:		
		CO ₂	(b)	
	(c)	O_2	` '	N_2
28.		creased asthmatic attacks in certain sea		
		Inhalation of seasonal pollen		Eating of seasonal vegetables
		Low temperature		Wet and dry environment
29.		one depletion in stratosphere results in		
		Forest fires	(b)	Increased incidence of skin cancer
	` '	Global warming	(d)	None
30.		ollution is:		
		Removal of top soil		mant
	` '	Release of toxic/undesirable materials in en	VIIOIII	ment
		Wastage of energy All of above		
31.	` '			
J 1.		hich causes water pollution: Smoke	(h)	Automobile exhausts
	` '	Pesticides	(d)	
32.		DD is connected with:	(u)	All
J2.		Organic matter	(h)	Microbes
		Microbes and organic matter	(d)	
33.		/ radiations bring about:	(~)	-
		Skin cancer	(b)	Mouth cancer
	` '	Lung cancer	` '	Liver cancer

34.	BOD is:						
	(a) Biological oxygen defi	cit		(b)	Biosphe	re oxyg	en demand
	(c) Biological oxygen den	nand		(d)	None of	the abo	ove
35.	Water pollution is main	nly due to					
	(a) Sulphur dioxide			(b)	Carbon	dioxide	
	(c) Carbon particles			(d)	Industri	al disch	arges
36.	Chlorofluorocarbon rel	eases harm	ful to ozo	ne:			
	(a) Free radicals			(b)	-Ve ions	5	
	(c) +Ve ions			(d)	All		
37.	Increasing skin cancer	and high mutation	rate are	due to	:		
	(a) Acid rain			(b)	Ozone o	depletio	า
	(c) CO			(d)	Smog		
38.	Ozone hole is largest of	ver:					
	(a) Europe			(b)	Antarcti	ca	
	(c) Asia			(d)	Africa		
39.	Ozone hole refers to:						
	(a) Physical hole in ozone						
	(b) Reduction in thickness	-	•				
	(c) Reduction of thickness		nere				
	(d) Increase concentratio						
40.	Environmental pollution	on affects:					
	(a) Biotic components						
	(b) Plants only						
	(c) Man only						
	(d) Biotic and abiotic com		ent				
41.	Water is often treated			(1.)	1.7:11		
	(a) Increase oxygen cont	ent		(b)	Kill gerr		
40	(c) Remove hardness			(d)	Remove	e susper	nded particles
42.	Result of ozone hole is			(1.)			
	(a) Greenhouse effect			(b)	Global v		
40	(c) Acid rain	-6 F- ! [F-(CN)]/	L .	(d)	uv rays	reacn t	he earth
43 .	Co-ordination number	of Fe in [Fe(CN)6]	-	(I-)	2		
	(a) 4			(b)	2		
	(c) 6			(d)	_4		
14.	Disinfection of water	_			on or:	(-1)	NUICI
4 =		(b) NCl ₃	(c)	HOCI		(d)	NHCl ₂
45 .	The residence time of			Thuas	مريما	(SGD 2	•
16 .		(b) one day	(c)	Three o	lays	(d)	Four days
+0.	In purification of pota (a) Nickle sulphate	Die water the coag	uiant use		Connor		11, LHR 13)
	` '			(p)	Copper	Sulphau	е
17 .	(c) Barrium sulphate Atmosphere contains			(d)	Alum		
+/.		(b) 0.02%	(c)	0.03%		(d)	None
48 .	(a) 0.01% (Biochemical oxygen d	· /	` ,		nattor i	` '	
1 0.	consume oxygen with	_	city of of	yanıc ı		(RWP 2	
		(b) 4 days	(c)	5 days		(RWP 2 (d)	6 days
49 .	Half of the mass of the	,		•	wor!	(RWP	•
T .		(b) 5.6 Km	(c)	3.6 Km		(d)	15 Km
50.	Lithosphere extends in	/		J.0 KIII		(a) (RWP 2	
<i>-</i> 0.	<u>-</u>	(b) 100 Km	(c)	150 Km	1	(d)	30 Km
51.	Chlorofluorocarbons p						50 Kill
· ± ·		(b) Stratosphere	(c)	Polar re		(d)	Equator
	(a) Hoposphicic ((2) Judiospileie	(5)	. Jiui i	9.011	(~)	_944401

52.			ainly ma	de up of 1	1 element	s, the elemer			
	•	entage is:	(1.)	C 1 :	()	6 1	•	P 11, BWP 10)
	(a)	Sodium	(b)	Calcium	(c)	Carbon	(d)	Silicone	٠,
53.		h one of the	-					(MTN 2008	8)
	(a)			ntage of CO ₂					
	(b)			luminum, mei	rcury and le	au Irom Son			
	(c)	It damages It decreases		_					
54.	(d)	much Earth's			Oceansi			(MTN 2008)	
J4.	(a)	97%	(b)	87%	(c)	77%	(d)	67%	
55.	` '	rgent greatly	` ,	07 70	(C)	77 70	(u)	(MTN 2009)	
JJ .	(a)	Aquatic life	ances		(b)	modern life		(14114 2005)	,
	(c)	Terrestrial li	ife		(d)	plant's life			
56.		Ozone layer i			(4)	pianes in c			
	(a)	25-28 Km h			(b)	26-29 Km high	1		
	(c)	24-27 Km h	-		(d)	20-28 Km high			
57.		egion of ear	_	e of support	` ,			(BWP 2008)
	(a)	Atmosphere		• • •	(b)	Biosphere		•	
	(c)	Lithosphere			(d)	Hydrosphere			
58.	The o	decrease in o	zone cor	centration	in overhea	d atmosphere	is occ	curring due	to
	huma	-	alf of the	ozone over	Antarctica	has been dep	leted ι	ıp to the yea	ır:
	(a)	1960			(b)	1970			
	(c)	1980			(d)	1990			
59.			vironmen	t which con	sists of all	water bodies i	s:		
	-	2010)			(1-)	I li salva avala ava			
	(a)	Biosphere			(b)	Hydrosphere			
60.	(c)	Lithosphere		d!d	(d)	Atmosphere	-3	(1115.45.4	-\
ου.	(a)	spaper can b 2	e recyclei (b)	again and i		ow many time	5?	(LHR 12,1 (d) 5	5)
61.		th one is seco		•	(c)	7		(u) 3	
01.	(a)	SO ₂	(b)	H ₂ CO ₃	(c)	СО		(d) CC) -
62.		th one is mos		112003	(C)	CO		(LHR 2015	
UZ.	(a)	SO ₂	(b)	NO ₂	(c)	CO		(d) CC	-
63.		oH of unpollu						(LHR 2014	
	(a)	5.00	(b)	5.60	(c)	6.50		(d) 7.0	-
	(-)		(-)		\ - /			(-)	-

1	2	3	4	5	6	7	8	9	10
С	С	С	a	a	b	d	d	b	a
11	12	13	14	15	16	17	18	19	20
b	а	b	С	С	а	b	C	d	а
21	22	23	24	25	26	27	28	29	30
а	d	b	С	d	а	b	а	b	b
31	32	33	34	35	36	37	38	39	40
С	С	а	С	d	а	b	b	b	d
41	42	43	44	45	46	47	48	49	50
b	d	С	С	d	d	С	С	b	b
51	52	53	54	55	56	57	58	59	60
С	d	a	a	a	a	b	С	b	d
61	62	63							
h		h	1						